enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Friction - Wikipedia

    en.wikipedia.org/wiki/Friction

    The normal force and the frictional force are ultimately determined using vector analysis, usually via a free body diagram. In general, process for solving any statics problem with friction is to treat contacting surfaces tentatively as immovable so that the corresponding tangential reaction force between them can be calculated.

  3. Capstan equation - Wikipedia

    en.wikipedia.org/wiki/Capstan_equation

    The capstan equation [1] or belt friction equation, also known as Euler–Eytelwein formula [2] (after Leonhard Euler and Johann Albert Eytelwein), [3] relates the hold-force to the load-force if a flexible line is wound around a cylinder (a bollard, a winch or a capstan).

  4. Stokes' law - Wikipedia

    en.wikipedia.org/wiki/Stokes'_law

    Creeping flow past a falling sphere in a fluid (e.g., a droplet of fog falling through the air): streamlines, drag force F d and force by gravity F g. At terminal (or settling) velocity , the excess force F e due to the difference between the weight and buoyancy of the sphere (both caused by gravity [ 7 ] ) is given by:

  5. Darcy–Weisbach equation - Wikipedia

    en.wikipedia.org/wiki/Darcy–Weisbach_equation

    The Darcy-Weisbach's accuracy and universal applicability makes it the ideal formula for flow in pipes. The advantages of the equation are as follows: [1] It is based on fundamentals. It is dimensionally consistent. It is useful for any fluid, including oil, gas, brine, and sludges. It can be derived analytically in the laminar flow region.

  6. Drag equation - Wikipedia

    en.wikipedia.org/wiki/Drag_equation

    Consequently when a body is moving relative to a gas, the drag coefficient varies with the Mach number and the Reynolds number. The analysis also gives other information for free, so to speak. The analysis shows that, other things being equal, the drag force will be proportional to the density of the fluid.

  7. Gay-Lussac's law - Wikipedia

    en.wikipedia.org/wiki/Gay-Lussac's_law

    These three gas laws in combination with Avogadro's law can be generalized by the ideal gas law. Gay-Lussac used the formula acquired from ΔV/V = αΔT to define the rate of expansion α for gases. For air, he found a relative expansion ΔV/V = 37.50% and obtained a value of α = 37.50%/100 °C = 1/266.66 °C which indicated that the value of ...

  8. Thermodynamic equations - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_equations

    The first and second law of thermodynamics are the most fundamental equations of thermodynamics. They may be combined into what is known as fundamental thermodynamic relation which describes all of the changes of thermodynamic state functions of a system of uniform temperature and pressure.

  9. Hagen–Poiseuille equation - Wikipedia

    en.wikipedia.org/wiki/Hagen–Poiseuille_equation

    To figure out the motion of the liquid, all forces acting on each lamina must be known: The pressure force pushing the liquid through the tube is the change in pressure multiplied by the area: F = −A Δp. This force is in the direction of the motion of the liquid. The negative sign comes from the conventional way we define Δp = p end − p ...