enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Large language model - Wikipedia

    en.wikipedia.org/wiki/Large_language_model

    A large language model (LLM) is a type of machine learning model designed for natural language processing tasks such as language generation. LLMs are language models with many parameters, and are trained with self-supervised learning on a vast amount of text. The largest and most capable LLMs are generative pretrained transformers (GPTs).

  3. List of large language models - Wikipedia

    en.wikipedia.org/wiki/List_of_large_language_models

    A large language model (LLM) is a type of machine learning model designed for natural language processing tasks such as language generation. LLMs are language models with many parameters, and are trained with self-supervised learning on a vast amount of text. This page lists notable large language models.

  4. Language model - Wikipedia

    en.wikipedia.org/wiki/Language_model

    A language model is a model of natural language. [1] Language models are useful for a variety of tasks, including speech recognition, [2] machine translation, [3] natural language generation (generating more human-like text), optical character recognition, route optimization, [4] handwriting recognition, [5] grammar induction, [6] and information retrieval.

  5. Wikipedia:Large language models and copyright - Wikipedia

    en.wikipedia.org/wiki/Wikipedia:Large_language...

    It is a good idea, if you are producing a large amount of text, to use a search engine for snippets, on the off-chance that the model has coincidentally duplicated previously-published material. Apart from the a possibility that saving an LLM output may cause verbatim non-free content to be carried over to the article, these models can produce ...

  6. Neural machine translation - Wikipedia

    en.wikipedia.org/wiki/Neural_machine_translation

    Generative language models are not trained on the translation task, let alone on a parallel dataset. Instead, they are trained on a language modeling objective, such as predicting the next word in a sequence drawn from a large dataset of text. This dataset can contain documents in many languages, but is in practice dominated by English text. [36]

  7. BERT (language model) - Wikipedia

    en.wikipedia.org/wiki/BERT_(language_model)

    On October 25, 2019, Google announced that they had started applying BERT models for English language search queries within the US. [27] On December 9, 2019, it was reported that BERT had been adopted by Google Search for over 70 languages. [28] [29] In October 2020, almost every single English-based query was processed by a BERT model. [30]

  8. T5 (language model) - Wikipedia

    en.wikipedia.org/wiki/T5_(language_model)

    T5 (Text-to-Text Transfer Transformer) is a series of large language models developed by Google AI introduced in 2019. [1] [2] Like the original Transformer model, [3] T5 models are encoder-decoder Transformers, where the encoder processes the input text, and the decoder generates the output text.

  9. BLOOM (language model) - Wikipedia

    en.wikipedia.org/wiki/BLOOM_(language_model)

    BigScience Large Open-science Open-access Multilingual Language Model (BLOOM) [1] [2] is a 176-billion-parameter transformer-based autoregressive large language model (LLM). The model, as well as the code base and the data used to train it, are distributed under free licences. [ 3 ]