Search results
Results from the WOW.Com Content Network
Ordinal data is a categorical, statistical data type where the variables have natural, ordered categories and the distances between the categories are not known. [ 1 ] : 2 These data exist on an ordinal scale , one of four levels of measurement described by S. S. Stevens in 1946.
Level of measurement or scale of measure is a classification that describes the nature of information within the values assigned to variables. [1] Psychologist Stanley Smith Stevens developed the best-known classification with four levels, or scales, of measurement: nominal, ordinal, interval, and ratio.
In statistics, ordinal regression, also called ordinal classification, is a type of regression analysis used for predicting an ordinal variable, i.e. a variable whose value exists on an arbitrary scale where only the relative ordering between different values is significant.
The concept of data type is similar to the concept of level of measurement, but more specific. For example, count data requires a different distribution (e.g. a Poisson distribution or binomial distribution) than non-negative real-valued data require, but both fall under the same level of measurement (a ratio scale).
This page was last edited on 17 March 2018, at 11:23 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may ...
In statistics, ranking is the data transformation in which numerical or ordinal values are replaced by their rank when the data are sorted. For example, the ranks of the numerical data 3.4, 5.1, 2.6, 7.3 are 2, 3, 1, 4. As another example, the ordinal data hot, cold, warm would be replaced by 3, 1, 2.
The discovery of a Guttman scale in data depends on their multivariate distribution's conforming to a particular structure (see below). Hence, a Guttman scale is a hypothesis about the structure of the data, formulated with respect to a specified attribute and a specified population and cannot be constructed for any given set of observations.
The data for this test consists of two groups; and for each member of the groups, the outcome is ranked for the study as a whole. Kerby showed that this rank correlation can be expressed in terms of two concepts: the percent of data that support a stated hypothesis, and the percent of data that do not support it.