Search results
Results from the WOW.Com Content Network
Enantioselective ketone reductions convert prochiral ketones into chiral, non-racemic alcohols and are used heavily for the synthesis of stereodefined alcohols. [ 1 ] Carbonyl reduction, the net addition of H 2 across a carbon-oxygen double bond, is an important way to prepare alcohols.
The Luche reduction can be conducted chemoselectively toward ketone in the presence of aldehydes or towards α,β-unsaturated ketones in the presence of a non-conjugated ketone. [5] An enone forms an allylic alcohol in a 1,2-addition, and the competing conjugate 1,4-addition is suppressed.
The McMurry reaction of benzophenone. The McMurry reaction is an organic reaction in which two ketone or aldehyde groups are coupled to form an alkene using a titanium chloride compound such as titanium(III) chloride and a reducing agent. The reaction is named after its co-discoverer, John E. McMurry.
Other processes may take place competitively under basic conditions, particularly when β-elimination is slow or not possible. [6] These pathways likely begin with lithiation of a carbon in the epoxide ring, followed by α-elimination to afford a carbene intermediate. 1,2-hydrogen migration leads to ketones, [2] while intramolecular C–H insertion affords cyclic alcohols with the formation of ...
In organic chemistry, carbonyl reduction is the conversion of any carbonyl group, usually to an alcohol. It is a common transformation that is practiced in many ways. [1] Ketones, aldehydes, carboxylic acids, esters, amides, and acid halides - some of the most pervasive functional groups, -comprise carbonyl compounds.
The selectivity of this reagent is illustrated by its reduction of all three methylcyclohexanones to the less stable methylcyclohexanols in >98% yield. Under certain conditions, L-selectride can selectively reduce enones by conjugate addition of hydride, owing to the greater steric hindrance the bulky hydride reagent experiences at the carbonyl ...
For the α,β unsaturated systems 10-12, efficient reduction of the ketone occurs despite the possible side reaction of hydroboration of the C-C unsaturated bond. The CBS reduction has also been shown to tolerate the presence of heteroatoms as in ketone 13 , which is capable of coordinating to the borane.
The reaction is a representative of 1,2-rearrangements. The long-established reaction mechanism was first proposed in its entirety by Christopher Kelk Ingold, and has been updated with in silico data [6] as outlined below. The reaction is second order overall in terms of rate, being first order in diketone and first order in base.