Search results
Results from the WOW.Com Content Network
The red curve is an epicycloid traced as the small circle (radius r = 1) rolls around the outside of the large circle (radius R = 3).. In geometry, an epicycloid (also called hypercycloid) [1] is a plane curve produced by tracing the path of a chosen point on the circumference of a circle—called an epicycle—which rolls without slipping around a fixed circle.
The cycloid through the origin, generated by a circle of radius r rolling over the x-axis on the positive side (y ≥ 0), consists of the points (x, y), with = () = (), where t is a real parameter corresponding to the angle through which the rolling circle has rotated. For given t, the circle's centre lies at (x, y) = (rt, r).
The red path is a hypocycloid traced as the smaller black circle rolls around inside the larger black circle (parameters are R=4.0, r=1.0, and so k=4, giving an astroid). In geometry , a hypocycloid is a special plane curve generated by the trace of a fixed point on a small circle that rolls within a larger circle.
nephroid: tangents as chords of a circle, principle nephroid: tangents as chords of a circle. Similar to the generation of a cardioid as envelope of a pencil of lines the following procedure holds: Draw a circle, divide its perimeter into equal spaced parts with points (see diagram) and number them consecutively.
[1] Roughly speaking, a roulette is the curve described by a point (called the generator or pole) attached to a given curve as that curve rolls without slipping, along a second given curve that is fixed. More precisely, given a curve attached to a plane which is moving so that the curve rolls, without slipping, along a given curve attached to a ...
The epitrochoid with R = 3, r = 1 and d = 1/2. In geometry, an epitrochoid (/ ɛ p ɪ ˈ t r ɒ k ɔɪ d / or / ɛ p ɪ ˈ t r oʊ k ɔɪ d /) is a roulette traced by a point attached to a circle of radius r rolling around the outside of a fixed circle of radius R, where the point is at a distance d from the center of the exterior circle.
The cyclocycloid (in this case an epicycloid) with R = 3, r = 1 and d = 1/2. A cyclocycloid is a roulette traced by a point attached to a circle of radius r rolling around, a fixed circle of radius R, where the point is at a distance d from the center of the exterior circle.
A cycloid (as used for the flank shape of a cycloidal gear) is constructed by rolling a rolling circle on a base circle. If the diameter of this rolling circle is chosen to be infinitely large, a straight line is obtained. The resulting cycloid is then called an involute and the gear is called an involute gear. In this respect involute gears ...