Search results
Results from the WOW.Com Content Network
Unit cell of an fcc material. Lattice configuration of the close packed slip plane in an fcc material. The arrow represents the Burgers vector in this dislocation glide system. Slip in face centered cubic (fcc) crystals occurs along the close packed plane. Specifically, the slip plane is of type , and the direction is of type < 1 10>.
The same packing density can also be achieved by alternate stackings of the same close-packed planes of spheres, including structures that are aperiodic in the stacking direction. The Kepler conjecture states that this is the highest density that can be achieved by any arrangement of spheres, either regular or irregular.
Comparison of fcc and hcp lattices, explaining the formation of stacking faults in close-packed crystals. In crystallography, a stacking fault is a planar defect that can occur in crystalline materials. [1] [2] Crystalline materials form repeating patterns of layers of atoms. Errors can occur in the sequence of these layers and are known as ...
This type of structural arrangement is known as cubic close packing (ccp). The unit cell of a ccp arrangement of atoms is the face-centered cubic (fcc) unit cell. This is not immediately obvious as the closely packed layers are parallel to the {111} planes of the fcc unit cell. There are four different orientations of the close-packed layers.
Note: the term fcc is often used in synonym for the cubic close-packed or ccp structure occurring in metals. However, fcc stands for a face-centered cubic Bravais lattice, which is not necessarily close-packed when a motif is set onto the lattice points. E.g. the diamond and the zincblende lattices are fcc but not close-packed. Each is ...
Here there is a choice between separating the spheres into regions of close-packed equal spheres, or combining the multiple sizes of spheres into a compound or interstitial packing. When many sizes of spheres (or a distribution ) are available, the problem quickly becomes intractable, but some studies of binary hard spheres (two sizes) are ...
"It is a big pet peeve of flyers, but that doesn't necessarily mean that there is a safety issue," said Stacey Zinke-McKee, a medical-research official at the Federal Aviation Administration ...
The Schmid Factor for an axial applied stress in the [] direction, along the primary slip plane of (), with the critical applied shear stress acting in the [] direction can be calculated by quickly determining if any of the dot product between the axial applied stress and slip plane, or dot product of axial applied stress and shear stress ...