Search results
Results from the WOW.Com Content Network
The centers of four squares all constructed either internally or externally on the sides of a parallelogram are the vertices of a square. [8] If two lines parallel to sides of a parallelogram are constructed concurrent to a diagonal, then the parallelograms formed on opposite sides of that diagonal are equal in area. [8]
The elements of a polytope can be considered according to either their own dimensionality or how many dimensions "down" they are from the body.
The square has Dih 4 symmetry, order 8. There are 2 dihedral subgroups: Dih 2, Dih 1, and 3 cyclic subgroups: Z 4, Z 2, and Z 1. A square is a special case of many lower symmetry quadrilaterals: A rectangle with two adjacent equal sides; A quadrilateral with four equal sides and four right angles; A parallelogram with one right angle and two ...
Vectors involved in the parallelogram law. In a normed space, the statement of the parallelogram law is an equation relating norms: ‖ ‖ + ‖ ‖ = ‖ + ‖ + ‖ ‖,.. The parallelogram law is equivalent to the seemingly weaker statement: ‖ ‖ + ‖ ‖ ‖ + ‖ + ‖ ‖, because the reverse inequality can be obtained from it by substituting (+) for , and () for , and then simplifying.
Traditionally, in two-dimensional geometry, a rhomboid is a parallelogram in which adjacent sides are of unequal lengths and angles are non-right angled.. The terms "rhomboid" and "parallelogram" are often erroneously conflated with each other (i.e, when most people refer to a "parallelogram" they almost always mean a rhomboid, a specific subtype of parallelogram); however, while all rhomboids ...
The rhombus has a square as a special case, and is a special case of a kite and parallelogram. In plane Euclidean geometry, a rhombus (pl.: rhombi or rhombuses) is a quadrilateral whose four sides all have the same length. Another name is equilateral quadrilateral, since equilateral means that all of its sides are equal in length.
Some regular polygons are easy to construct with compass and straightedge; other regular polygons are not constructible at all. The ancient Greek mathematicians knew how to construct a regular polygon with 3, 4, or 5 sides, [ 11 ] : p. xi and they knew how to construct a regular polygon with double the number of sides of a given regular polygon.
Informally: "a box or oblong" (including a square). Square (regular quadrilateral): all four sides are of equal length (equilateral), and all four angles are right angles. An equivalent condition is that opposite sides are parallel (a square is a parallelogram), and that the diagonals perpendicularly bisect each other and are of equal length.