Search results
Results from the WOW.Com Content Network
The definition of matrix multiplication is that if C = AB for an n × m matrix A and an m × p matrix B, then C is an n × p matrix with entries = =. From this, a simple algorithm can be constructed which loops over the indices i from 1 through n and j from 1 through p, computing the above using a nested loop:
In theoretical computer science, the computational complexity of matrix multiplication dictates how quickly the operation of matrix multiplication can be performed. Matrix multiplication algorithms are a central subroutine in theoretical and numerical algorithms for numerical linear algebra and optimization, so finding the fastest algorithm for matrix multiplication is of major practical ...
Computing the k th power of a matrix needs k – 1 times the time of a single matrix multiplication, if it is done with the trivial algorithm (repeated multiplication). As this may be very time consuming, one generally prefers using exponentiation by squaring , which requires less than 2 log 2 k matrix multiplications, and is therefore much ...
For example, OpenBLAS's level-3 computations were primarily optimized for large and square matrices (often considered as regular-shaped matrices). And now irregular-shaped matrix multiplication are also supported, such as tall and skinny matrix multiplication (TSMM), [5] which supports faster deep learning calculations on the CPU. TSMM is one ...
In computer science, Cannon's algorithm is a distributed algorithm for matrix multiplication for two-dimensional meshes first described in 1969 by Lynn Elliot Cannon. [1] [2]It is especially suitable for computers laid out in an N × N mesh. [3]
Hermes Project: C++/Python library for rapid prototyping of space- and space-time adaptive hp-FEM solvers. IML++ is a C++ library for solving linear systems of equations, capable of dealing with dense, sparse, and distributed matrices. IT++ is a C++ library for linear algebra (matrices and vectors), signal processing and communications ...
The ordinary matrix multiplication A B can be performed by setting α to one and C to an all-zeros matrix of the appropriate size. Also included in Level 3 are routines for computing B ← α T − 1 B , {\displaystyle {\boldsymbol {B}}\leftarrow \alpha {\boldsymbol {T}}^{-1}{\boldsymbol {B}},}
Printable version; In other projects ... Pages in category "Matrix multiplication algorithms" ... By using this site, ...