enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Recurrent neural network - Wikipedia

    en.wikipedia.org/wiki/Recurrent_neural_network

    Recurrent neural networks (RNNs) are a class of artificial neural network commonly used for sequential data processing. Unlike feedforward neural networks, which process data in a single pass, RNNs process data across multiple time steps, making them well-adapted for modelling and processing text, speech, and time series.

  3. Types of artificial neural networks - Wikipedia

    en.wikipedia.org/wiki/Types_of_artificial_neural...

    A RNN (often a LSTM) where a series is decomposed into a number of scales where every scale informs the primary length between two consecutive points. A first order scale consists of a normal RNN, a second order consists of all points separated by two indices and so on. The Nth order RNN connects the first and last node.

  4. Bidirectional recurrent neural networks - Wikipedia

    en.wikipedia.org/wiki/Bidirectional_recurrent...

    Structure of RNN and BRNN [1] The principle of BRNN is to split the neurons of a regular RNN into two directions, one for positive time direction (forward states), and another for negative time direction (backward states). Those two states' output are not connected to inputs of the opposite direction states.

  5. Echo state network - Wikipedia

    en.wikipedia.org/wiki/Echo_state_network

    RNNs were rarely used in practice before the introduction of the ESN, because of the complexity involved in adjusting their connections (e.g., lack of autodifferentiation, susceptibility to vanishing/exploding gradients, etc.). RNN training algorithms were slow and often vulnerable to issues, such as branching errors. [16] Convergence could ...

  6. Training, validation, and test data sets - Wikipedia

    en.wikipedia.org/wiki/Training,_validation,_and...

    A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]

  7. Radial basis function network - Wikipedia

    en.wikipedia.org/wiki/Radial_basis_function_network

    The parameters , , and are determined in a manner that optimizes the fit between and the data. Two unnormalized radial basis functions in one input dimension. The basis function centers are located at c 1 = 0.75 {\displaystyle c_{1}=0.75} and c 2 = 3.25 {\displaystyle c_{2}=3.25} .

  8. Long short-term memory - Wikipedia

    en.wikipedia.org/wiki/Long_short-term_memory

    In theory, classic RNNs can keep track of arbitrary long-term dependencies in the input sequences. The problem with classic RNNs is computational (or practical) in nature: when training a classic RNN using back-propagation, the long-term gradients which are back-propagated can "vanish", meaning they can tend to zero due to very small numbers creeping into the computations, causing the model to ...

  9. Recursive neural network - Wikipedia

    en.wikipedia.org/wiki/Recursive_neural_network

    A recursive neural network is a kind of deep neural network created by applying the same set of weights recursively over a structured input, to produce a structured prediction over variable-size input structures, or a scalar prediction on it, by traversing a given structure in topological order.