Search results
Results from the WOW.Com Content Network
Stereocilin is a protein that in humans is encoded by the STRC gene. [5] [6] [7] The STRC gene provides instructions for creating a protein called stereocilin, named for its location outside the stereocilia cells in the inner ear. This protein is associated with the hair bundle of the sensory hair cells in the inner
For every DNA base pair separated by the advancing polymerase, one hybrid RNA:DNA base pair is immediately formed. DNA strands and nascent RNA chain exit from separate channels; the two DNA strands reunite at the trailing end of the transcription bubble while the single strand RNA emerges alone.
These MBD proteins bind most strongly to highly methylated CpG islands. [24] These MBD proteins have both a methyl-CpG-binding domain as well as a transcription repression domain. [24] They bind to methylated DNA and guide or direct protein complexes with chromatin remodeling and/or histone modifying activity to methylated CpG islands.
The MAPK protein is an enzyme, a protein kinase that can attach phosphate to target proteins such as the transcription factor MYC and, thus, alter gene transcription and, ultimately, cell cycle progression. Many cellular proteins are activated downstream of the growth factor receptors (such as EGFR) that initiate this signal transduction pathway.
Gene structure is the organisation of specialised sequence elements within a gene.Genes contain most of the information necessary for living cells to survive and reproduce. [1] [2] In most organisms, genes are made of DNA, where the particular DNA sequence determines the function of the gene.
In mammalian outer hair cells, the varying receptor potential is converted to active vibrations of the cell body. This mechanical response to electrical signals is termed somatic electromotility; [13] it drives variations in the cell's length, synchronized to the incoming sound signal, and provides mechanical amplification by feedback to the traveling wave.
A second version of the central dogma is popular but incorrect. This is the simplistic DNA → RNA → protein pathway published by James Watson in the first edition of The Molecular Biology of the Gene (1965). Watson's version differs from Crick's because Watson describes a two-step (DNA → RNA and RNA → protein) process as the central ...
DNA is transcribed into mRNA molecules, which travel to the ribosome where the mRNA is used as a template for the construction of the protein strand. Since nucleic acids can bind to molecules with complementary sequences, there is a distinction between " sense " sequences which code for proteins, and the complementary "antisense" sequence ...