Search results
Results from the WOW.Com Content Network
Breadth-first search (BFS) is an algorithm for searching a tree data structure for a node that satisfies a given property. It starts at the tree root and explores all nodes at the present depth prior to moving on to the nodes at the next depth level.
Thus, simple depth-first or breadth-first searches do not traverse every infinite tree, and are not efficient on very large trees. However, hybrid methods can traverse any (countably) infinite tree, essentially via a diagonal argument ("diagonal"—a combination of vertical and horizontal—corresponds to a combination of depth and breadth).
A level-order walk effectively performs a breadth-first search over the entirety of a tree; nodes are traversed level by level, where the root node is visited first, followed by its direct child nodes and their siblings, followed by its grandchild nodes and their siblings, etc., until all nodes in the tree have been traversed.
More specific types spanning trees, existing in every connected finite graph, include depth-first search trees and breadth-first search trees. Generalizing the existence of depth-first-search trees, every connected graph with only countably many vertices has a Trémaux tree. [28] However, some uncountable-order graphs do not have such a tree. [29]
This tree is known as a depth-first search tree or a breadth-first search tree according to the graph exploration algorithm used to construct it. [18] Depth-first search trees are a special case of a class of spanning trees called Trémaux trees, named after the 19th-century discoverer of depth-first search. [19]
Binary trees can also be stored in breadth-first order as an implicit data structure in arrays, and if the tree is a complete binary tree, this method wastes no space.
Beam search uses breadth-first search to build its search tree. At each level of the tree, it generates all successors of the states at the current level, sorting them in increasing order of heuristic cost. [2] However, it only stores a predetermined number, , of best states at each level (called the beam width). Only those states are expanded ...
The n th rational number in a breadth-first traversal of the Calkin–Wilf tree is the number fusc(n) / fusc(n + 1) . [9] Thus, the diatomic sequence forms both the sequence of numerators and the sequence of denominators of the numbers in the Calkin–Wilf sequence. The function fusc(n + 1) is the number of odd binomial coefficients of ...