Search results
Results from the WOW.Com Content Network
Primarily, intestinal macrophages do not induce inflammatory responses. Whereas tissue macrophages release various inflammatory cytokines, such as IL-1, IL-6 and TNF-α, intestinal macrophages do not produce or secrete inflammatory cytokines. This change is directly caused by the intestinal macrophages environment.
Pro-inflammatory cytokines such as IL-1β, IL-6, and TNF-α also trigger pathological pain. [1] While IL-1β is released by monocytes and macrophages, it is also present in nociceptive DRG neurons. IL-6 plays a role in neuronal reaction to an injury. TNF-α is a well known proinflammatory cytokine present in neurons and the glia.
Cytokines are produced by a broad range of cells, including immune cells like macrophages, B lymphocytes, T lymphocytes and mast cells, as well as endothelial cells, fibroblasts, and various stromal cells; a given cytokine may be produced by more than one type of cell.
They also induce the synthesis and release of other pro-inflammatory cytokines such as interleukin 1 (IL-1), IL-6 and TNF-α from fibroblasts and macrophages. The genes for CCL3 and CCL4 are both located on human chromosome 17 [9] and on murine chromosome 11. [4]
When under physical stress, the release of CCL2 (cytokine) in the hair follicle induces the infiltration of macrophages. The infiltrated macrophages mainly express an M1 phenotype, which are pro-inflammatory macrophages that could trigger apoptosis of cells in the follicle by their upregulation of pro-inflammatory cytokines such as TNF-a. [2]
Activated macrophages in the tissue release cytokines such as IL-1 and TNFα, which in turn leads to production of chemokines that bind to proteoglycans forming gradient in the inflamed tissue and along the endothelial wall. [26]
Macrophages can be stimulated by T cell secretion of interferon. [9] After this activation, macrophages are able to express MHC class II and co-stimulatory molecules, including the B7 complex and can present phagocytosed peptide fragments to helper T cells. [7] [8] Activation can assist pathogen-infected macrophages in clearing the infection. [10]
When insufficient to ward off the threat, alveolar macrophages can release proinflammatory cytokines and chemokines to call forth a highly developed network of defensive phagocytic cells responsible for the adaptive immune response. During COVID-19 infection, alveolar macrophages play a dual role by acting as the first line of defense against ...