Search results
Results from the WOW.Com Content Network
In vector calculus, a complex lamellar vector field is a vector field which is orthogonal to a family of surfaces. In the broader context of differential geometry, complex lamellar vector fields are more often called hypersurface-orthogonal vector fields. They can be characterized in a number of different ways, many of which involve the curl.
In geometry, a hypersurface is a generalization of the concepts of hyperplane, plane curve, and surface.A hypersurface is a manifold or an algebraic variety of dimension n − 1, which is embedded in an ambient space of dimension n, generally a Euclidean space, an affine space or a projective space. [1]
One of the original motivations for studying such maps was in the study of knots constructed by taking an -ball around a singular point of a plane curve, which is isomorphic to a real 4-dimensional ball, and looking at the knot inside the boundary, which is a 1-manifold inside of a 3-sphere.
In differential geometry, the Gauss map of a surface is a function that maps each point in the surface to a unit vector that is orthogonal to the surface at that point. Namely, given a surface X in Euclidean space R 3 , the Gauss map is a map N : X → S 2 (where S 2 is the unit sphere ) such that for each p in X , the function value N ( p ) is ...
A conformal map acting on a rectangular grid. Note that the orthogonality of the curved grid is retained. While vector operations and physical laws are normally easiest to derive in Cartesian coordinates, non-Cartesian orthogonal coordinates are often used instead for the solution of various problems, especially boundary value problems, such as those arising in field theories of quantum ...
In geometry, a hyperplane of an n-dimensional space V is a subspace of dimension n − 1, or equivalently, of codimension 1 in V.The space V may be a Euclidean space or more generally an affine space, or a vector space or a projective space, and the notion of hyperplane varies correspondingly since the definition of subspace differs in these settings; in all cases however, any hyperplane can ...
The genus of a curve C which is the complete intersection of two surfaces D and E in P 3 can also be computed using the adjunction formula. Suppose that d and e are the degrees of D and E, respectively. Applying the adjunction formula to D shows that its canonical divisor is (d − 4)H| D, which is the intersection product of (d − 4)H and D.
(The restriction yields a vector field on the contact hypersurface because the Hamiltonian vector field preserves energy levels.) The dynamics of the Reeb field can be used to study the structure of the contact manifold or even the underlying manifold using techniques of Floer homology such as symplectic field theory and, in three dimensions ...