Search results
Results from the WOW.Com Content Network
The even-hole-free graphs are the graphs containing no induced cycles with an even number of vertices. The trivially perfect graphs are the graphs that have neither an induced path of length three nor an induced cycle of length four. By the strong perfect graph theorem, the perfect graphs are the graphs with no odd hole and no odd antihole.
While even-hole-free graphs can be recognized in polynomial time, it is NP-complete to determine whether a graph contains an even hole that includes a specific vertex. [ 3 ] It is unknown whether graph coloring and the maximum independent set problem can be solved in polynomial time on even-hole-free graphs, or whether they are NP-complete.
Thus, a planar graph has genus 0, because it can be drawn on a sphere without self-crossing. The non-orientable genus of a graph is the minimal integer n such that the graph can be drawn without crossing itself on a sphere with n cross-caps (i.e. a non-orientable surface of (non-orientable) genus n). (This number is also called the demigenus.)
In graph theory, the Möbius ladder M n, for even numbers n, is formed from an n-cycle by adding edges (called "rungs") connecting opposite pairs of vertices in the cycle. It is a cubic, circulant graph, so-named because (with the exception of M 6 (the utility graph K 3,3), M n has exactly n/2 four-cycles [1] which link together by their shared edges to form a topological Möbius strip.
Chordal graphs are precisely the graphs that are both odd-hole-free and even-hole-free (see holes in graph theory). Every chordal graph is a strangulated graph , a graph in which every peripheral cycle is a triangle, because peripheral cycles are a special case of induced cycles.
This is a graph with vertex set the pants decompositions of , and two vertices are joined if they are related by an elementary move, which is one of the two following operations: take a curve α {\displaystyle \alpha } in the decomposition in a one-holed torus and replace it by a curve in the torus intersecting it only once,
Given a function: from a set X (the domain) to a set Y (the codomain), the graph of the function is the set [4] = {(, ()):}, which is a subset of the Cartesian product.In the definition of a function in terms of set theory, it is common to identify a function with its graph, although, formally, a function is formed by the triple consisting of its domain, its codomain and its graph.
In his 1961 and 1963 works defining for the first time this class of graphs, Claude Berge observed that it is impossible for a perfect graph to contain an odd hole, an induced subgraph in the form of an odd-length cycle graph of length five or more, because odd holes have clique number two and chromatic number three.