Search results
Results from the WOW.Com Content Network
Given a function: from a set X (the domain) to a set Y (the codomain), the graph of the function is the set [4] = {(, ()):}, which is a subset of the Cartesian product.In the definition of a function in terms of set theory, it is common to identify a function with its graph, although, formally, a function is formed by the triple consisting of its domain, its codomain and its graph.
[1] [2] The harmonic polynomials form a subspace of the vector space of polynomials over the given field. In fact, they form a graded subspace. [3] For the real field (), the harmonic polynomials are important in mathematical physics. [4] [5] [6]
An example of a more complicated (although small enough to be written here) solution is the unique real root of x 5 − 5x + 12 = 0. Let a = √ 2φ −1, b = √ 2φ, and c = 4 √ 5, where φ = 1+ √ 5 / 2 is the golden ratio. Then the only real solution x = −1.84208... is given by
For example, the system x 3 – 1 = 0, x 2 – 1 = 0 is overdetermined (having two equations but only one unknown), but it is not inconsistent since it has the solution x = 1. A system is underdetermined if the number of equations is lower than the number of the variables.
The solution set for the equations x − y = −1 and 3x + y = 9 is the single point (2, 3). A solution of a linear system is an assignment of values to the variables ,, …, such that each of the equations is satisfied. The set of all possible solutions is called the solution set. [5]
If y 2 = x 3 − x − 1, then the field C(x, y) is an elliptic function field. The element x is not uniquely determined; the field can also be regarded, for instance, as an extension of C(y). The algebraic curve corresponding to the function field is simply the set of points (x, y) in C 2 satisfying y 2 = x 3 − x − 1.
A non-vertical line can be defined by its slope m, and its y-intercept y 0 (the y coordinate of its intersection with the y-axis). In this case, its linear equation can be written = +. If, moreover, the line is not horizontal, it can be defined by its slope and its x-intercept x 0. In this case, its equation can be written
Bernstein polynomials can be generalized to k dimensions – the resulting polynomials have the form B i 1 (x 1) B i 2 (x 2) ... B i k (x k). [1] In the simplest case only products of the unit interval [0,1] are considered; but, using affine transformations of the line, Bernstein polynomials can also be defined for products [a 1, b 1] × [a 2 ...