Search results
Results from the WOW.Com Content Network
In physics, a characteristic length is an important dimension that defines the scale of a physical system. Often, such a length is used as an input to a formula in order to predict some characteristics of the system, and it is usually required by the construction of a dimensionless quantity, in the general framework of dimensional analysis and in particular applications such as fluid mechanics.
The atomic length scale is ℓ a ~ 10 −10 m and is given by the size of hydrogen atom (i.e., the Bohr radius, approximately 53 pm).; The length scale for the strong interactions (or the one derived from QCD through dimensional transmutation) is around ℓ s ~ 10 −15 m, and the "radii" of strongly interacting particles (such as the proton) are roughly comparable.
A characteristic property is a chemical or physical property that helps identify and classify substances. The characteristic properties of a substance are always the same whether the sample being observed is large or small. Thus, conversely, if the property of a substance changes as the sample size changes, that property is not a characteristic ...
Dimensionless numbers (or characteristic numbers) have an important role in analyzing the behavior of fluids and their flow as well as in other transport phenomena. [1] They include the Reynolds and the Mach numbers, which describe as ratios the relative magnitude of fluid and physical system characteristics, such as density, viscosity, speed of sound, and flow speed.
A physical property is any property of a physical system that is measurable. [1] The changes in the physical properties of a system can be used to describe its changes between momentary states.
Mass per unit length kg⋅m −1: L −1 M: Luminous flux (or luminous power) F: Perceived power of a light source lumen (lm = cd⋅sr) J: Mach number (or mach) M: Ratio of flow velocity to the local speed of sound unitless: 1: Magnetic flux: Φ: Measure of magnetism, taking account of the strength and the extent of a magnetic field: weber (Wb ...
Sometimes in the field of physics "matter" is simply equated with particles that exhibit rest mass (i.e., that cannot travel at the speed of light), such as quarks and leptons. However, in both physics and chemistry, matter exhibits both wave-like and particle-like properties, the so-called wave–particle duality. [10] [11] [12]
Optical path length, the product of the distance light travels and the refractive index of the medium it travels through; Mean free path, the average distance that a particle travels before scattering; Radiation length, a characteristic length for the decay of radiation in a medium