Search results
Results from the WOW.Com Content Network
The efficiency of a conventional steam–electric power plant, defined as energy produced by the plant divided by the heating value of the fuel consumed by it, is typically 33 to 48%, limited as all heat engines are by the laws of thermodynamics (See: Carnot cycle). The rest of the energy must leave the plant in the form of heat.
A thermal power station, also known as a thermal power plant, is a type of power station in which the heat energy generated from various fuel sources (e.g., coal, natural gas, nuclear fuel, etc.) is converted to electrical energy. [1]
The energy required to heat water is significantly lower than that needed to vaporize it, for example for steam distillation [10] and the energy is easier to recycle using heat exchangers. The energy requirements can be calculated from steam tables. For example, to heat water from 25 °C to steam at 250 °C at 1 atm requires 2869 kJ/kg.
Water heating is a heat transfer process that uses an energy source to heat water above its initial temperature. Typical domestic uses of hot water include cooking, cleaning, bathing, and space heating. In industry, hot water and water heated to steam have many uses.
Steam is used to accentuate drying of concrete especially in prefabricates. Care should be taken since concrete produces heat during hydration and additional heat from the steam could be detrimental to hardening reaction processes of the concrete. In chemical and petrochemical industries, steam is used in various chemical processes as a reactant.
Superheating is an exception to this simple rule; a liquid is sometimes observed not to boil even though its vapor pressure does exceed the ambient pressure. The cause is an additional force, the surface tension, which suppresses the growth of bubbles. [4] Surface tension makes the bubble act like an elastic balloon.
The liquid fluoride thorium reactor (LFTR; often pronounced lifter) is a type of molten salt reactor. LFTRs use the thorium fuel cycle with a fluoride-based molten (liquid) salt for fuel. In a typical design, the liquid is pumped between a critical core and an external heat exchanger where
The fuel is mixed with air within its flammable limits and heated by compression and subject to Boyle's law above its flash point, then ignited by the spark plug. To ignite, the fuel must have a low flash point, but in order to avoid preignition caused by residual heat in a hot combustion chamber, the fuel must have a high autoignition temperature.