Search results
Results from the WOW.Com Content Network
The mechanism of the Horner-Wadsworth-Emmons reaction. The ratio of alkene isomers 5 and 6 is not dependent upon the stereochemical outcome of the initial carbanion addition and upon the ability of the intermediates to equilibrate. The electron-withdrawing group (EWG) alpha to the phosphonate is necessary for the final elimination to occur.
Triethyl phosphonoacetate is a reagent for organic synthesis used in the Horner-Wadsworth-Emmons reaction (HWE) or the Horner-Emmons modification. Triethyl phosphonoacetate can be added dropwise to sodium methoxide solution to prepare a phosphonate anion. It has an acidic proton that can easily be abstracted by a weak base.
William D. Emmons (November 18, 1924 – December 8, 2001) was an American chemist and published with William S. Wadsworth a modification to the Wittig-Horner reaction using phosphonate-stabilized carbanions, now called the Horner-Wadsworth-Emmons reaction in his honor.
The Horner-Wadsworth-Emmons reaction is a widely used olefination reaction in which a phosphonate-stabilized carbanion reacts with an aldehyde or ketone to form an alkene. In the standard HWE reaction, the phosphonate ester contains alkoxy substituents (typically methoxy or ethoxy), producing an E -alkene as the major product.
1,2-Oxaphosphetanes are rarely isolated but are important intermediates in the Wittig reaction and related reactions such as the Seyferth–Gilbert homologation and the Horner–Wadsworth–Emmons reaction. [2] Edwin Vedejs's NMR studies first revealed the importance of oxaphosphetanes in the mechanism of the Wittig reaction in the 1970s. [3] [4]
In the related Michaelis–Arbuzov reaction the same reactants are known to form a beta-keto phosphonate which is an important reagent in the Horner–Wadsworth–Emmons reaction on the road to alkenes. The Perkow reaction, in this respect is considered a side-reaction.
It is however less reactive than ylides lacking EWGs. For example they usually fail to react with ketones, necessitating the use of the Horner–Wadsworth–Emmons reaction as an alternative. Such stabilized ylides usually give rise to an E-alkene product when they react, rather than the more usual Z-alkene.
Molecular simplification began first by disconnecting both carbon chains with a Wittig reaction and Horner-Wadsworth Emmons modification. The Wittig reaction affords the cis product, while the Horner-Wadsworth Emmons produces the trans olefin. The published synthesis reveals a 1:1 diastereomeric mixture of the carbonyl reduction using zinc ...