Search results
Results from the WOW.Com Content Network
Vincenty suggested a method of accelerating the convergence in such cases (Rapp, 1993). An example of a failure of the inverse method to converge is (Φ 1, L 1) = (0°, 0°) and (Φ 2, L 2) = (0.5°, 179.7°) for the WGS84 ellipsoid. In an unpublished report, Vincenty (1975b) gave an alternative iterative scheme to handle such cases.
Vincenty (1975) provides solutions for the direct and inverse problems; these are based on a series expansion carried out to third order in the flattening and provide an accuracy of about 0.1 mm for the WGS84 ellipsoid; however the inverse method fails to converge for nearly antipodal points.
Finding the geodesic between two points on the Earth, the so-called inverse geodetic problem, was the focus of many mathematicians and geodesists over the course of the 18th and 19th centuries with major contributions by Clairaut, [5] Legendre, [6] Bessel, [7] and Helmert English translation of Astron. Nachr. 4, 241–254 (1825). Errata. [8]
The solutions to both problems in plane geometry reduce to simple trigonometry and are valid for small areas on Earth's surface; on a sphere, solutions become significantly more complex as, for example, in the inverse problem, the azimuths differ going between the two end points along the arc of the connecting great circle.
An inverse problem in science is the process of calculating from a set of observations the causal factors that produced them: for example, calculating an image in X-ray computed tomography, source reconstruction in acoustics, or calculating the density of the Earth from measurements of its gravity field. It is called an inverse problem because ...
"Background" which describes where Vincenty's formulas come from and why he put them in this form. "Nearly antipodal points" which describes the problems of failure to converge or slow convergence for the inverse method. This includes pointers to Vincenty's efforts to correct these problems.
Vincenty's formulae, a fast algorithm to calculate the distance between two latitude/longitude points Topics referred to by the same term This disambiguation page lists articles associated with the title Vincenty .
P ' is the inverse of P with respect to the circle. To invert a number in arithmetic usually means to take its reciprocal. A closely related idea in geometry is that of "inverting" a point. In the plane, the inverse of a point P with respect to a reference circle (Ø) with center O and radius r is a point P ', lying on the ray from O through P ...