Search results
Results from the WOW.Com Content Network
where = / has units of velocity and is called the Darcy velocity (or the specific discharge, filtration velocity, or superficial velocity). The pore or interstitial velocity is the average velocity of fluid molecules in the pores; it is related to the Darcy velocity and the porosity through the Dupuit-Forchheimer relationship
Superficial velocity (or superficial flow velocity), in engineering of multiphase flows and flows in porous media, is a hypothetical (artificial) flow velocity calculated as if the given phase or fluid were the only one flowing or present in a given cross sectional area. Other phases, particles, the skeleton of the porous medium, etc. present ...
The advection-like term of the Soil Moisture Velocity Equation is particularly useful for calculating the advance of wetting fronts for a liquid invading an unsaturated porous medium under the combined action of gravity and capillarity because it is convertible to an ordinary differential equation by neglecting the diffusion-like term.
Darcy's law is an equation that describes the flow of a fluid through a porous medium and through a Hele-Shaw cell.The law was formulated by Henry Darcy based on results of experiments [1] on the flow of water through beds of sand, forming the basis of hydrogeology, a branch of earth sciences.
We notice that the volumetric flow rate is a scalar quantity and that the direction is taken care of by the normal vector of the surface (area) and the volumetric flux (Darcy velocity). In a reservoir model the geometric volume is divided into grid cells, and the area of interest now is the intersectional area between two adjoining cells.
is the partial derivative in the direction x of the flow velocity component v that is oriented along the direction y. We can now generalize to the case of an incompressible flow with a general direction in the 3D space, the above constitutive equation becomes τ i j = μ ( ∂ v i ∂ x j + ∂ v j ∂ x i ) {\displaystyle \tau _{ij}=\mu \left ...
The area required to calculate the volumetric flow rate is real or imaginary, flat or curved, either as a cross-sectional area or a surface. The vector area is a combination of the magnitude of the area through which the volume passes through, A , and a unit vector normal to the area, n ^ {\displaystyle {\hat {\mathbf {n} }}} .
Even in the case of laminar flow, where all the flow lines are parallel to the length of the pipe, the velocity of the fluid on the inner surface of the pipe is zero due to viscosity, and the velocity in the center of the pipe must therefore be larger than the average velocity obtained by dividing the volumetric flow rate by the wet area.