enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Convex combination - Wikipedia

    en.wikipedia.org/wiki/Convex_combination

    A conical combination is a linear combination with nonnegative coefficients. When a point is to be used as the reference origin for defining displacement vectors, then is a convex combination of points ,, …, if and only if the zero displacement is a non-trivial conical combination of their respective displacement vectors relative to .

  3. Free body diagram - Wikipedia

    en.wikipedia.org/wiki/Free_body_diagram

    Then the vector value of the resultant force would be determined by the missing edge of the polygon. [2] In the diagram, the forces P 1 to P 6 are applied to the point O. The polygon is constructed starting with P 1 and P 2 using the parallelogram of forces (vertex a). The process is repeated (adding P 3 yields the vertex b, etc.). The ...

  4. Vector algebra relations - Wikipedia

    en.wikipedia.org/wiki/Vector_algebra_relations

    The following are important identities in vector algebra.Identities that only involve the magnitude of a vector ‖ ‖ and the dot product (scalar product) of two vectors A·B, apply to vectors in any dimension, while identities that use the cross product (vector product) A×B only apply in three dimensions, since the cross product is only defined there.

  5. Resultant force - Wikipedia

    en.wikipedia.org/wiki/Resultant_force

    The forces and torques acting on a rigid body can be assembled into the pair of vectors called a wrench. [3] If a system of forces and torques has a net resultant force F and a net resultant torque T, then the entire system can be replaced by a force F and an arbitrarily located couple that yields a torque of T.

  6. Resultant - Wikipedia

    en.wikipedia.org/wiki/Resultant

    Given two homogeneous polynomials P(x, y) and Q(x, y) of respective total degrees p and q, their homogeneous resultant is the determinant of the matrix over the monomial basis of the linear map (,) +, where A runs over the bivariate homogeneous polynomials of degree q − 1, and B runs over the homogeneous polynomials of degree p − 1. In ...

  7. Cross product - Wikipedia

    en.wikipedia.org/wiki/Cross_product

    In general, if a vector [a 1, a 2, a 3] is represented as the quaternion a 1 i + a 2 j + a 3 k, the cross product of two vectors can be obtained by taking their product as quaternions and deleting the real part of the result. The real part will be the negative of the dot product of the two vectors.

  8. Triple product - Wikipedia

    en.wikipedia.org/wiki/Triple_product

    In geometry and algebra, the triple product is a product of three 3-dimensional vectors, usually Euclidean vectors.The name "triple product" is used for two different products, the scalar-valued scalar triple product and, less often, the vector-valued vector triple product.

  9. Linear combination - Wikipedia

    en.wikipedia.org/wiki/Linear_combination

    Let the field K be the set R of real numbers, and let the vector space V be the Euclidean space R 3. Consider the vectors e 1 = (1,0,0), e 2 = (0,1,0) and e 3 = (0,0,1). Then any vector in R 3 is a linear combination of e 1, e 2, and e 3. To see that this is so, take an arbitrary vector (a 1,a 2,a 3) in R 3, and write: