Search results
Results from the WOW.Com Content Network
p53, also known as Tumor protein P53, cellular tumor antigen p53 (UniProt name), or transformation-related protein 53 (TRP53) is a regulatory protein that is often mutated in human cancers. The p53 proteins (originally thought to be, and often spoken of as, a single protein) are crucial in vertebrates , where they prevent cancer formation. [ 5 ]
The p53 p63 p73 family is a family of tumor suppressor genes. [1] [2] This gene family codes the proteins: p53; TP73L (also known as "p63") p73; They are sometimes considered part of a "p53 family." When overexpressed, these proteins are known to be involved in tumor pathogenesis. [3]
For example ESCs have been differentiated into insulin-producing cells, [26] and researchers at Harvard University were able to produce large quantities of pancreatic beta cells from ESCs. [ 27 ] An article published in the European Heart Journal describes a translational process of generating human embryonic stem cell-derived cardiac ...
The p53 upregulated modulator of apoptosis (PUMA) also known as Bcl-2-binding component 3 (BBC3), is a pro-apoptotic protein, member of the Bcl-2 protein family. [5] [6] In humans, the Bcl-2-binding component 3 protein is encoded by the BBC3 gene. [5] [6] The expression of PUMA is regulated by the tumor suppressor p53.
Mutated p53 is involved in many human cancers, of the 6.5 million cancer diagnoses each year about 37% are connected to p53 mutations. [30] This makes it a popular target for new cancer therapies. Homozygous loss of p53 is found in 65% of colon cancers, 30–50% of breast cancers, and 50% of lung cancers.
Tumor suppressor p53-binding protein 1 also known as p53-binding protein 1 or 53BP1 is a protein that in humans is encoded by the TP53BP1 gene. [ 5 ] [ 6 ] [ 7 ] Clinical significance
An example of one such gene is p53. Patients with Li-Fraumeni syndrome , for example, have mutations in the p53 gene that suggest caretaker function. p53 has an identified role, however, in regulating the cell cycle as well, which is an essential gatekeeper function.
In the field of genetics, a suicide gene is a gene that will cause a cell to kill itself through the process of apoptosis (programmed cell death). Activation of a suicide gene can cause death through a variety of pathways, but one important cellular "switch" to induce apoptosis is the p53 protein.