Search results
Results from the WOW.Com Content Network
An underdamped response is one that oscillates within a decaying envelope. The more underdamped the system, the more oscillations and longer it takes to reach steady-state. Here damping ratio is always less than one. Critically damped A critically damped response is the response that reaches the steady-state value the fastest without being ...
The settling time for a second order, underdamped system responding to a step response can be approximated if the damping ratio by = () A general form is T s = − ln ( tolerance fraction × 1 − ζ 2 ) damping ratio × natural freq {\displaystyle T_{s}=-{\frac {\ln({\text{tolerance fraction}}\times {\sqrt {1-\zeta ^{2}}})}{{\text ...
Plot showing underdamped and overdamped responses of a series RLC circuit to a voltage input step of 1 V. The critical damping plot is the bold red curve. The plots are normalised for L = 1, C = 1 and ω 0 = 1. The differential equation has the characteristic equation, [7] + + =.
For example, landing a plane in autopilot: if the system overshoots and releases landing gear too late, the outcome would be a disaster. Critically damped The case where = is the border between the overdamped and underdamped cases, and is referred to as critically damped. This turns out to be a desirable outcome in many cases where engineering ...
In the special case of overdamped dynamics, the inertia of the particle is negligible in comparison to the damping force, and the trajectory () is described by the overdamped Langevin equation = + () +, where is the damping constant.
In the theory of dynamical systems and control theory, a linear time-invariant system is marginally stable if it is neither asymptotically stable nor unstable.Roughly speaking, a system is stable if it always returns to and stays near a particular state (called the steady state), and is unstable if it goes further and further away from any state, without being bounded.
In statistical mechanics and information theory, the Fokker–Planck equation is a partial differential equation that describes the time evolution of the probability density function of the velocity of a particle under the influence of drag forces and random forces, as in Brownian motion. The equation can be generalized to other observables as ...
The Q factor is a parameter that describes the resonance behavior of an underdamped harmonic oscillator (resonator). Sinusoidally driven resonators having higher Q factors resonate with greater amplitudes (at the resonant frequency) but have a smaller range of frequencies around that frequency for which they resonate; the range of frequencies for which the oscillator resonates is called the ...