Search results
Results from the WOW.Com Content Network
The following list contains syntax examples of how a range of element of an array can be accessed. In the following table: first – the index of the first element in the slice; last – the index of the last element in the slice; end – one more than the index of last element in the slice; len – the length of the slice (= end - first)
In C++, a class can overload all of the pointer operations, so an iterator can be implemented that acts more or less like a pointer, complete with dereference, increment, and decrement. This has the advantage that C++ algorithms such as std::sort can immediately be applied to plain old memory buffers, and that there is no new syntax to learn ...
The following containers are defined in the current revision of the C++ standard: array, vector, list, forward_list, deque. Each of these containers implements different algorithms for data storage, which means that they have different speed guarantees for different operations: [1] array implements a compile-time non-resizable array.
In array languages, operations are generalized to apply to both scalars and arrays. Thus, a+b expresses the sum of two scalars if a and b are scalars, or the sum of two arrays if they are arrays. An array language simplifies programming but possibly at a cost known as the abstraction penalty.
The user can search for elements in an associative array, and delete elements from the array. The following shows how multi-dimensional associative arrays can be simulated in standard AWK using concatenation and the built-in string-separator variable SUBSEP:
A regular singly linked list only has efficient insertion and deletion at one end. However, a small modification—keeping a pointer to the last node in addition to the first one—will enable it to implement an efficient queue. A deque implemented using a modified dynamic array
Adding or removing elements by calling the methods of the container (also from the same thread) makes the iterator unusable. An attempt to get the next element throws the exception. An exception is also thrown if there are no more elements remaining (hasNext() has previously returned false).
Here, c[i:i+3] represents the four array elements from c[i] to c[i+3] and the vector processor can perform four operations for a single vector instruction. Since the four vector operations complete in roughly the same time as one scalar instruction, the vector approach can run up to four times faster than the original code.