Search results
Results from the WOW.Com Content Network
He also gave two other approximations of π: π ≈ 22 ⁄ 7 and π ≈ 355 ⁄ 113, which are not as accurate as his decimal result. The latter fraction is the best possible rational approximation of π using fewer than five decimal digits in the numerator and denominator. Zu Chongzhi's results surpass the accuracy reached in Hellenistic ...
The number π (/ p aɪ / ⓘ; spelled out as "pi") is a mathematical constant, approximately equal to 3.14159, that is the ratio of a circle's circumference to its diameter.It appears in many formulae across mathematics and physics, and some of these formulae are commonly used for defining π, to avoid relying on the definition of the length of a curve.
The table below is a brief chronology of computed numerical values of, or bounds on, the mathematical constant pi (π). For more detailed explanations for some of these calculations, see Approximations of π. As of July 2024, π has been calculated to
355 / 113 is the best rational approximation of π with a denominator of four digits or fewer, being accurate to six decimal places. It is within 0.000 009 % of the value of π, or in terms of common fractions overestimates π by less than 1 / 3 748 629 .
Proofs of the mathematical result that the rational number 22 / 7 is greater than π (pi) date back to antiquity. One of these proofs, more recently developed but requiring only elementary techniques from calculus, has attracted attention in modern mathematics due to its mathematical elegance and its connections to the theory of Diophantine approximations.
Pi Approximation Day is observed on July 22 (22/7 in the day/month date format), since the fraction 22 ⁄ 7 is a common approximation of π, which is accurate to two decimal places and dates from Archimedes. [33] In Indonesia, a country that uses the DD/MM/YYYY date format, some people celebrate Pi Day every July 22. [34]
The following is a list of significant formulae involving the mathematical constant π. Many of these formulae can be found in the article Pi , or the article Approximations of π . Euclidean geometry
Approximations of π; B. Bailey–Borwein–Plouffe formula; Basel problem; Bellard's formula; Borwein's algorithm; C. Chronology of computation of π ...