enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Numerical methods for ordinary differential equations

    en.wikipedia.org/wiki/Numerical_methods_for...

    First-order means that only the first derivative of y appears in the equation, and higher derivatives are absent. Without loss of generality to higher-order systems, we restrict ourselves to first-order differential equations, because a higher-order ODE can be converted into a larger system of first-order equations by introducing extra variables.

  3. Linear differential equation - Wikipedia

    en.wikipedia.org/wiki/Linear_differential_equation

    The solutions of a homogeneous linear differential equation form a vector space. In the ordinary case, this vector space has a finite dimension, equal to the order of the equation. All solutions of a linear differential equation are found by adding to a particular solution any solution of the associated homogeneous equation.

  4. System of differential equations - Wikipedia

    en.wikipedia.org/wiki/System_of_differential...

    A differential system is a means of studying a system of partial differential equations using geometric ideas such as differential forms and vector fields. For example, the compatibility conditions of an overdetermined system of differential equations can be succinctly stated in terms of differential forms (i.e., for a form to be exact, it ...

  5. Linear recurrence with constant coefficients - Wikipedia

    en.wikipedia.org/wiki/Linear_recurrence_with...

    In mathematics (including combinatorics, linear algebra, and dynamical systems), a linear recurrence with constant coefficients [1]: ch. 17 [2]: ch. 10 (also known as a linear recurrence relation or linear difference equation) sets equal to 0 a polynomial that is linear in the various iterates of a variable—that is, in the values of the elements of a sequence.

  6. Ordinary differential equation - Wikipedia

    en.wikipedia.org/wiki/Ordinary_differential_equation

    A singular solution is a solution that cannot be obtained by assigning definite values to the arbitrary constants in the general solution. [23] In the context of linear ODE, the terminology particular solution can also refer to any solution of the ODE (not necessarily satisfying the initial conditions), which is then added to the homogeneous ...

  7. Method of characteristics - Wikipedia

    en.wikipedia.org/wiki/Method_of_characteristics

    For a first-order PDE, the method of characteristics discovers so called characteristic curves along which the PDE becomes an ODE. [1] [2] Once the ODE is found, it can be solved along the characteristic curves and transformed into a solution for the original PDE.

  8. Floquet theory - Wikipedia

    en.wikipedia.org/wiki/Floquet_theory

    Let ˙ = be a linear first order differential equation, where () is a column vector of length and () an periodic matrix with period (that is (+) = for all real values of ). Let ϕ ( t ) {\displaystyle \phi \,(t)} be a fundamental matrix solution of this differential equation.

  9. Abel's identity - Wikipedia

    en.wikipedia.org/wiki/Abel's_identity

    This is a first-order linear differential equation, and it remains to show that Abel's identity gives the unique solution, which attains the value () at . Since the function p {\displaystyle p} is continuous on I {\displaystyle I} , it is bounded on every closed and bounded subinterval of I {\displaystyle I} and therefore integrable, hence