enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Deadlock prevention algorithms - Wikipedia

    en.wikipedia.org/wiki/Deadlock_prevention_algorithms

    Distributed deadlocks can be detected either by constructing a global wait-for graph, from local wait-for graphs at a deadlock detector or by a distributed algorithm like edge chasing. Phantom deadlocks are deadlocks that are detected in a distributed system due to system internal delays but no longer actually exist at the time of detection.

  3. Deadlock (computer science) - Wikipedia

    en.wikipedia.org/wiki/Deadlock_(computer_science)

    Deadlock avoidance algorithm analyzes each and every request by examining that there is no possibility of deadlock occurrence in the future if the requested resource is allocated. The drawback of this approach is its requirement of information in advance about how resources are to be requested in the future.

  4. Dining philosophers problem - Wikipedia

    en.wikipedia.org/wiki/Dining_philosophers_problem

    These four conditions are necessary for a deadlock to occur: mutual exclusion (no fork can be simultaneously used by multiple philosophers), resource holding (the philosophers hold a fork while waiting for the second), non-preemption (no philosopher can take a fork from another), and circular wait (each philosopher may be waiting on the ...

  5. Priority ceiling protocol - Wikipedia

    en.wikipedia.org/wiki/Priority_ceiling_protocol

    The task's priority is set to the priority ceiling of the resource, thus no task that may lock the resource is able to get scheduled. This ensures the OCPP property that "A task can only lock a resource if its dynamic priority is higher than the priority ceilings of all resources locked by other tasks".

  6. Rate-monotonic scheduling - Wikipedia

    en.wikipedia.org/wiki/Rate-monotonic_scheduling

    In many practical applications, resources are shared and the unmodified RMS will be subject to priority inversion and deadlock hazards. In practice, this is solved by disabling preemption or by priority inheritance. Alternative methods are to use lock-free algorithms or avoid the sharing of a mutex/semaphore across threads with different ...

  7. Turn restriction routing - Wikipedia

    en.wikipedia.org/wiki/Turn_restriction_routing

    A deadlock (shown in fig 1) is a situation in which no further transportation of packets can take place due to the saturation of network resources like buffers or links. The main reason for a deadlock is the cyclic acquisition of channels in the network. [2] For example, consider there are four channels in a network.

  8. Deadlock - Wikipedia

    en.wikipedia.org/wiki/Deadlock

    Deadlock commonly refers to: Deadlock (locksmithing) or deadbolt, a physical door locking mechanism; Deadlock (computer science), a situation where two processes are each waiting for the other to finish; Political deadlock or gridlock, a situation of difficulty passing laws that satisfy the needs of the people

  9. Priority inversion - Wikipedia

    en.wikipedia.org/wiki/Priority_inversion

    With no third priority, inversion is impossible. Since there's only one piece of lock data (the interrupt-enable bit), misordering locking is impossible, and so deadlocks cannot occur. Since the critical regions always run to completion, hangs do not occur. Note that this only works if all interrupts are disabled.