Search results
Results from the WOW.Com Content Network
exact dihedral angle (radians) dihedral angle – exact in bold, else approximate (degrees) Platonic solids (regular convex) Tetrahedron {3,3} (3.3.3) arccos ( 1 / 3 ) 70.529° Hexahedron or Cube {4,3} (4.4.4) arccos (0) = π / 2 90° Octahedron {3,4} (3.3.3.3) arccos (- 1 / 3 ) 109.471° Dodecahedron {5,3} (5.5.5) arccos ...
The 12 face angles - there are three of them for each of the four faces of the tetrahedron. The 6 dihedral angles - associated to the six edges of the tetrahedron, since any two faces of the tetrahedron are connected by an edge. The 4 solid angles - associated to each point of the tetrahedron.
Dihedral angles are used to specify the molecular conformation. [6] Stereochemical arrangements corresponding to angles between 0° and ±90° are called syn (s), those corresponding to angles between ±90° and 180° anti (a). Similarly, arrangements corresponding to angles between 30° and 150° or between −30° and −150° are called ...
A space-filling tetrahedral disphenoid inside a cube. Two edges have dihedral angles of 90°, and four edges have dihedral angles of 60°. A disphenoid is a tetrahedron with four congruent triangles as faces; the triangles necessarily have all angles acute. The regular tetrahedron is a special case of a disphenoid.
The dihedral angle of an elongated triangular bipyramid can be calculated by adding the angle of the tetrahedron and the triangular prism: [5] the dihedral angle of a tetrahedron between two adjacent triangular faces is arccos ( 1 3 ) ≈ 70.5 ∘ {\textstyle \arccos \left({\frac {1}{3}}\right)\approx 70.5^{\circ }} ;
For instance, for the ideal cube, the dihedral angles are / and their supplements are /. The three supplementary angles at a single vertex sum to 2 π {\displaystyle 2\pi } but the four angles crossed by a curve midway between two opposite faces sum to 8 π / 3 > 2 π {\displaystyle 8\pi /3>2\pi } , and other curves cross even more of these ...
Molecular geometries can be specified in terms of 'bond lengths', 'bond angles' and 'torsional angles'. The bond length is defined to be the average distance between the nuclei of two atoms bonded together in any given molecule. A bond angle is the angle formed between three atoms across at least two bonds.
Given the edge length .The surface area of a truncated tetrahedron is the sum of 4 regular hexagons and 4 equilateral triangles' area, and its volume is: [2] =, =.. The dihedral angle of a truncated tetrahedron between triangle-to-hexagon is approximately 109.47°, and that between adjacent hexagonal faces is approximately 70.53°.