enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Damping capacity - Wikipedia

    en.wikipedia.org/wiki/Damping_capacity

    Damping capacity is a mechanical property of materials that measure a material's ability to dissipate elastic strain energy during mechanical vibration or wave propagation. When ranked according to damping capacity, materials may be roughly categorized as either high- or low-damping.

  3. Damping - Wikipedia

    en.wikipedia.org/wiki/Damping

    The effect of varying damping ratio on a second-order system. The damping ratio is a parameter, usually denoted by ζ (Greek letter zeta), [7] that characterizes the frequency response of a second-order ordinary differential equation. It is particularly important in the study of control theory. It is also important in the harmonic oscillator ...

  4. Shock response spectrum - Wikipedia

    en.wikipedia.org/wiki/Shock_response_spectrum

    Different damping ratios produce different SRSs for the same shock waveform. Zero damping will produce a maximum response. Very high damping produces a very boring SRS: A horizontal line. The level of damping is demonstrated by the "quality factor", Q which can also be thought of transmissibility in sinusoidal vibration case.

  5. Gray iron - Wikipedia

    en.wikipedia.org/wiki/Gray_iron

    Relative damping capacity of various metals [15] Materials Damping capacity † Gray iron (high carbon equivalent) 100–500 Gray iron (low carbon equivalent) 20–100 Ductile iron: 5–20 Malleable iron: 8–15 White iron: 2–4 Steel: 4 Aluminum: 0.47 † Natural log of the ratio of successive amplitudes

  6. Logarithmic decrement - Wikipedia

    en.wikipedia.org/wiki/Logarithmic_decrement

    The logarithmic decrement can be obtained e.g. as ln(x 1 /x 3).Logarithmic decrement, , is used to find the damping ratio of an underdamped system in the time domain.. The method of logarithmic decrement becomes less and less precise as the damping ratio increases past about 0.5; it does not apply at all for a damping ratio greater than 1.0 because the system is overdamped.

  7. Harmonic oscillator - Wikipedia

    en.wikipedia.org/wiki/Harmonic_oscillator

    = is called the "damping ratio". Step response of a damped harmonic oscillator; curves are plotted for three values of μ = ω 1 = ω 0 √ 1 − ζ 2. Time is in units of the decay time τ = 1/(ζω 0). The value of the damping ratio ζ critically determines the behavior of the system. A damped harmonic oscillator can be:

  8. RLC circuit - Wikipedia

    en.wikipedia.org/wiki/RLC_circuit

    In the filtering application, the resistor becomes the load that the filter is working into. The value of the damping factor is chosen based on the desired bandwidth of the filter. For a wider bandwidth, a larger value of the damping factor is required (and vice versa). The three components give the designer three degrees of freedom.

  9. Transient response - Wikipedia

    en.wikipedia.org/wiki/Transient_response

    Here damping ratio is always less than one. Critically damped A critically damped response is the response that reaches the steady-state value the fastest without being underdamped. It is related to critical points in the sense that it straddles the boundary of underdamped and overdamped responses. Here, the damping ratio is always equal to one.