enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Vapor pressure - Wikipedia

    en.wikipedia.org/wiki/Vapor_pressure

    This is illustrated in the vapor pressure chart (see right) that shows graphs of the vapor pressures versus temperatures for a variety of liquids. [7] At the normal boiling point of a liquid, the vapor pressure is equal to the standard atmospheric pressure defined as 1 atmosphere, [ 1 ] 760 Torr, 101.325 kPa, or 14.69595 psi.

  3. Vapour pressure of water - Wikipedia

    en.wikipedia.org/wiki/Vapour_pressure_of_water

    The boiling point of water is the temperature at which the saturated vapor pressure equals the ambient pressure. Water supercooled below its normal freezing point has a higher vapor pressure than that of ice at the same temperature and is, thus, unstable. Calculations of the (saturation) vapor pressure of water are commonly used in meteorology.

  4. Raoult's law - Wikipedia

    en.wikipedia.org/wiki/Raoult's_law

    Raoult's law (/ ˈ r ɑː uː l z / law) is a relation of physical chemistry, with implications in thermodynamics.Proposed by French chemist François-Marie Raoult in 1887, [1] [2] it states that the partial pressure of each component of an ideal mixture of liquids is equal to the vapor pressure of the pure component (liquid or solid) multiplied by its mole fraction in the mixture.

  5. Water activity - Wikipedia

    en.wikipedia.org/wiki/Water_activity

    The definition of a w is where p is the partial water vapor pressure in equilibrium with the solution, and p* is the (partial) vapor pressure of pure water at the same temperature. An alternate definition can be a w ≡ l w x w {\displaystyle a_{w}\equiv l_{w}x_{w}} where l w is the activity coefficient of water and x w is the mole fraction of ...

  6. Kelvin equation - Wikipedia

    en.wikipedia.org/wiki/Kelvin_equation

    The vapour pressure above the curved interface is then higher than that for the planar interface. This picture provides a simple conceptual basis for the Kelvin equation. The change in vapor pressure can be attributed to changes in the Laplace pressure. When the Laplace pressure rises in a droplet, the droplet tends to evaporate more easily.

  7. Dew point - Wikipedia

    en.wikipedia.org/wiki/Dew_point

    The dew point of a given body of air is the temperature to which it must be cooled to become saturated with water vapor. This temperature depends on the pressure and water content of the air. When the air is cooled below the dew point, its moisture capacity is reduced and airborne water vapor will condense to form liquid water known as dew. [1]

  8. Tetens equation - Wikipedia

    en.wikipedia.org/wiki/Tetens_equation

    where temperature T is in degrees Celsius (°C) and saturation vapor pressure P is in kilopascals (kPa). According to Monteith and Unsworth, "Values of saturation vapour pressure from Tetens' formula are within 1 Pa of exact values up to 35 °C." Murray (1967) provides Tetens' equation for temperatures below 0 °C: [3]

  9. Water vapor - Wikipedia

    en.wikipedia.org/wiki/Water_vapor

    Water vapor has lower density than that of air and is therefore buoyant in air but has lower vapor pressure than that of air. When water vapor is used as a lifting gas by a thermal airship the water vapor is heated to form steam so that its vapor pressure is greater than the surrounding air pressure in order to maintain the shape of a ...