Search results
Results from the WOW.Com Content Network
ESBWR safety systems are designed to operate normally in the event of station blackout, which prevented proper functioning of the emergency core cooling systems at the Fukushima Daiichi Nuclear Power Plant. Below the vessel, there is a piping structure (core catcher) that allows for cooling of the core during any very severe accident.
Slightly different versions of the ABWR are offered by GE-Hitachi, Hitachi-GE, and Toshiba. [5]In 1997 the GE-Hitachi U.S. ABWR design was certified as a final design in final form by the U.S. Nuclear Regulatory Commission, meaning that its performance, efficiency, output, and safety have already been verified, making it bureaucratically easier to build it rather than a non-certified design.
The facility is approximately 30 miles (48 km) east of San Francisco, under jurisdiction of the US Nuclear Regulatory Commission's Region IV. [2] The Vallecitos boiling water reactor (VBWR) was the first privately owned and operated nuclear power plant to deliver significant quantities of electricity to a public utility grid. During the period ...
The ABWR incorporates advanced technologies in the design, including computer control, plant automation, control rod removal, motion, and insertion, in-core pumping, and nuclear safety to deliver improvements over the original series of production BWRs, with a high power output (1350 MWe per reactor), and a significantly lowered probability of ...
PRISM (Power Reactor Innovative Small Module, sometimes S-PRISM from SuperPRISM) is a nuclear power plant design by GE Hitachi Nuclear Energy (GEH). Design [ edit ]
In Canada, the organization was known as GE Hitachi Nuclear Energy Canada and its purpose is to provide fuel and service nuclear power plants that operate on heavy water reactors made by Atomic Energy Canada. [3] In 2016, GE and Hitachi sold GE Hitachi Nuclear Energy Canada to BWXT Canada Ltd. and renamed BWXT Nuclear Energy Canada [5] [6] [7] [8]
The design garnered world attention in the aftermath of the INES level 7 Fukushima Daiichi nuclear disaster of 11 March 2011. GE had been a major contractor to the Fukushima Daiichi Nuclear Power Plant in Japan, which consisted of six boiling water reactors of GE design. The reactors for Units 1, 2, and 6 were supplied by General Electric, the ...
The water, held under high pressure to keep it from boiling, produces steam by transferring heat to a secondary source of water. The steam is used to generate electricity. Cooling water from the river condenses the steam back into water. The river water is either discharged directly back to the river or cooled in the towers and reused in the plant.