enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Mutual exclusivity - Wikipedia

    en.wikipedia.org/wiki/Mutual_exclusivity

    In logic, two propositions and are mutually exclusive if it is not logically possible for them to be true at the same time; that is, () is a tautology. To say that more than two propositions are mutually exclusive, depending on the context, means either 1. "() () is a tautology" (it is not logically possible for more than one proposition to be true) or 2. "() is a tautology" (it is not ...

  3. Law of noncontradiction - Wikipedia

    en.wikipedia.org/wiki/Law_of_noncontradiction

    In logic, the law of non-contradiction (LNC) (also known as the law of contradiction, principle of non-contradiction (PNC), or the principle of contradiction) states that contradictory propositions cannot both be true in the same sense at the same time, e. g. the two propositions "the house is white" and "the house is not white" are mutually exclusive.

  4. Law of total probability - Wikipedia

    en.wikipedia.org/wiki/Law_of_total_probability

    The law of total probability is [1] a theorem that states, in its discrete case, if {: =,,, …} is a finite or countably infinite set of mutually exclusive and collectively exhaustive events, then for any event () = ()

  5. Independence (probability theory) - Wikipedia

    en.wikipedia.org/wiki/Independence_(probability...

    Independence is a fundamental notion in probability theory, as in statistics and the theory of stochastic processes.Two events are independent, statistically independent, or stochastically independent [1] if, informally speaking, the occurrence of one does not affect the probability of occurrence of the other or, equivalently, does not affect the odds.

  6. Craps principle - Wikipedia

    en.wikipedia.org/wiki/Craps_principle

    In probability theory, the craps principle is a theorem about event probabilities under repeated iid trials. Let and denote two mutually exclusive events which might occur on a given trial.

  7. Inclusion–exclusion principle - Wikipedia

    en.wikipedia.org/wiki/Inclusion–exclusion...

    To prove the inclusion–exclusion principle for the cardinality of sets, sum the equation over all x in the union of A 1, ..., A n. To derive the version used in probability, take the expectation in . In general, integrate the equation with respect to μ. Always use linearity in these derivations.

  8. Probability space - Wikipedia

    en.wikipedia.org/wiki/Probability_space

    For example, the probability of the union of the mutually exclusive events and in the random experiment of one coin toss, (), is the sum of probability for and the probability for , () + (). Second, the probability of the sample space Ω {\displaystyle \Omega } must be equal to 1 (which accounts for the fact that, given an execution of the ...

  9. Pairwise independence - Wikipedia

    en.wikipedia.org/wiki/Pairwise_independence

    Pairwise independence does not imply mutual independence, as shown by the following example attributed to S. Bernstein. [3]Suppose X and Y are two independent tosses of a fair coin, where we designate 1 for heads and 0 for tails.