enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Conjugate transpose - Wikipedia

    en.wikipedia.org/wiki/Conjugate_transpose

    The conjugate transpose, therefore, arises very naturally as the result of simply transposing such a matrix—when viewed back again as an matrix made up of complex numbers. For an explanation of the notation used here, we begin by representing complex numbers e i θ {\displaystyle e^{i\theta }} as the rotation matrix, that is,

  3. QR decomposition - Wikipedia

    en.wikipedia.org/wiki/QR_decomposition

    Online Matrix Calculator Performs QR decomposition of matrices. LAPACK users manual gives details of subroutines to calculate the QR decomposition; Mathematica users manual gives details and examples of routines to calculate QR decomposition; ALGLIB includes a partial port of the LAPACK to C++, C#, Delphi, etc.

  4. Unitary matrix - Wikipedia

    en.wikipedia.org/wiki/Unitary_matrix

    In linear algebra, an invertible complex square matrix U is unitary if its matrix inverse U −1 equals its conjugate transpose U *, that is, if = =, where I is the identity matrix.. In physics, especially in quantum mechanics, the conjugate transpose is referred to as the Hermitian adjoint of a matrix and is denoted by a dagger (⁠ † ⁠), so the equation above is written

  5. Vectorization (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Vectorization_(mathematics)

    The matrix vectorization operation can be written in terms of a linear sum. Let X be an m × n matrix that we want to vectorize, and let e i be the i -th canonical basis vector for the n -dimensional space, that is e i = [ 0 , … , 0 , 1 , 0 , … , 0 ] T {\textstyle \mathbf {e} _{i}=\left[0,\dots ,0,1,0,\dots ,0\right]^{\mathrm {T} }} .

  6. List of open-source software for mathematics - Wikipedia

    en.wikipedia.org/wiki/List_of_open-source...

    It was originally known as "HECKE and Manin". After a short while it was renamed SAGE, which stands for ‘’Software of Algebra and Geometry Experimentation’’. Sage 0.1 was released in 2005 and almost a year later Sage 1.0 was released. It already consisted of Pari, GAP, Singular and Maxima with an interface that rivals that of Mathematica.

  7. Eigendecomposition of a matrix - Wikipedia

    en.wikipedia.org/wiki/Eigendecomposition_of_a_matrix

    Let A be a square n × n matrix with n linearly independent eigenvectors q i (where i = 1, ..., n).Then A can be factored as = where Q is the square n × n matrix whose i th column is the eigenvector q i of A, and Λ is the diagonal matrix whose diagonal elements are the corresponding eigenvalues, Λ ii = λ i.

  8. Weingarten function - Wikipedia

    en.wikipedia.org/wiki/Weingarten_function

    In mathematics, Weingarten functions are rational functions indexed by partitions of integers that can be used to calculate integrals of products of matrix coefficients over classical groups. They were first studied by Weingarten (1978) who found their asymptotic behavior, and named by Collins (2003) , who evaluated them explicitly for the ...

  9. Xcas - Wikipedia

    en.wikipedia.org/wiki/Xcas

    Xcas has compatibility modes with many popular algebra systems like WolframAlpha, [4] Mathematica, [5] Maple, [6] or MuPAD. Users can use Giac/Xcas to develop formal algorithms or use it in other software. Giac is used in SageMath [4] for calculus operations. Among other things, Xcas can solve differential equations (Figure 3) and draw graphs ...