enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. NTU method - Wikipedia

    en.wikipedia.org/wiki/NTU_Method

    The number of transfer units (NTU) method is used to calculate the rate of heat transfer in heat exchangers (especially parallel flow, counter current, and cross-flow exchangers) when there is insufficient information to calculate the log mean temperature difference (LMTD). Alternatively, this method is useful for determining the expected heat ...

  3. Sankey diagram - Wikipedia

    en.wikipedia.org/wiki/Sankey_diagram

    Sankey diagrams can also visualize the energy accounts, material flow accounts on a regional or national level, and cost breakdowns. [2] The diagrams are often used in the visualization of material flow analysis. Sankey diagrams emphasize the major transfers or flows within a system. They help locate the most important contributions to a flow.

  4. Pinch analysis - Wikipedia

    en.wikipedia.org/wiki/Pinch_analysis

    Temperature vs. heat load diagram of hot stream (H 2 O entering at 20 bar, 473.15 K, and 4 kg/s) and cold stream (R-11 entering at 18 bar, 303.15 K, and 5 kg/s) in a counter-flow heat exchanger. "Pinch" is the point of closest approach between the hot and cold streams in the T vs. H diagram.

  5. Heisler chart - Wikipedia

    en.wikipedia.org/wiki/Heisler_Chart

    These first Heisler–Gröber charts were based upon the first term of the exact Fourier series solution for an infinite plane wall: (,) = = [⁡ + ⁡ ⁡], [1]where T i is the initial uniform temperature of the slab, T ∞ is the constant environmental temperature imposed at the boundary, x is the location in the plane wall, λ is the root of λ * tan λ = Bi, and α is thermal diffusivity.

  6. Logarithmic mean temperature difference - Wikipedia

    en.wikipedia.org/wiki/Logarithmic_mean...

    U is the heat transfer coefficient (watts per kelvin per square meter), A is the exchange area. Note that estimating the heat transfer coefficient may be quite complicated. This holds both for cocurrent flow, where the streams enter from the same end, and for countercurrent flow, where they enter from different ends.

  7. Heat transfer - Wikipedia

    en.wikipedia.org/wiki/Heat_transfer

    A heat exchanger is used for more efficient heat transfer or to dissipate heat. Heat exchangers are widely used in refrigeration, air conditioning, space heating, power generation, and chemical processing. One common example of a heat exchanger is a car's radiator, in which the hot coolant fluid is cooled by the flow of air over the radiator's ...

  8. Organic Rankine cycle - Wikipedia

    en.wikipedia.org/wiki/Organic_Rankine_cycle

    T-s diagram for the ideal/real ORC. The working principle of the organic Rankine cycle is the same as that of the Rankine cycle: the working fluid is pumped to a boiler where it is evaporated, passed through an expansion device (turbine, [3] screw, [4] scroll, [5] or other expander), and then through a condenser heat exchanger where it is finally re-condensed.

  9. Countercurrent exchange - Wikipedia

    en.wikipedia.org/wiki/Countercurrent_exchange

    Cocurrent and countercurrent heat exchange. A cocurrent heat exchanger is an example of a cocurrent flow exchange mechanism. Two tubes have a liquid flowing in the same direction. One starts off hot at 60 °C (140 °F), the second cold at 20 °C (68 °F). A thermoconductive membrane or an open section allows heat transfer between the two flows.