Search results
Results from the WOW.Com Content Network
A scatter plot, also called a scatterplot, scatter graph, scatter chart, scattergram, or scatter diagram, [2] is a type of plot or mathematical diagram using Cartesian coordinates to display values for typically two variables for a set of data. If the points are coded (color/shape/size), one additional variable can be displayed.
In statistics, several scatterplot smoothing methods are available to fit a function through the points of a scatterplot to best represent the relationship between the variables. Scatterplots may be smoothed by fitting a line to the data points in a diagram.
Scatterplot of the eruption interval for the Old Faithful geyser. A plot is a graphical technique for representing a data set, usually as a graph showing the relationship between two or more variables. The plot can be drawn by hand or by a computer.
It assumes a linear relationship between the variables and is sensitive to outliers. The best-fitting linear equation is often represented as a straight line to minimize the difference between the predicted values from the equation and the actual observed values of the dependent variable. Schematic of a scatterplot with simple line regression
Example scatterplots of various datasets with various correlation coefficients. The most familiar measure of dependence between two quantities is the Pearson product-moment correlation coefficient (PPMCC), or "Pearson's correlation coefficient", commonly called simply "the correlation coefficient".
Examples of scatter diagrams with different values of correlation coefficient (ρ) Several sets of (x, y) points, with the correlation coefficient of x and y for each set.. The correlation reflects the strength and direction of a linear relationship (top row), but not the slope of that relationship (middle), nor many aspects of nonlinear relationships (botto
The first scatter plot (top left) appears to be a simple linear relationship, corresponding to two correlated variables, where y could be modelled as gaussian with mean linearly dependent on x. For the second graph (top right), while a relationship between the two variables is obvious, it is not linear, and the Pearson correlation coefficient ...
Local regression or local polynomial regression, [1] also known as moving regression, [2] is a generalization of the moving average and polynomial regression. [3] Its most common methods, initially developed for scatterplot smoothing, are LOESS (locally estimated scatterplot smoothing) and LOWESS (locally weighted scatterplot smoothing), both pronounced / ˈ l oʊ ɛ s / LOH-ess.