Search results
Results from the WOW.Com Content Network
The process of obtaining solution of (x, y) of an Euler spiral can thus be described as: Map L of the original Euler spiral by multiplying with factor a to L′ of the normalized Euler spiral; Find (x′, y′) from the Fresnel integrals; and; Map (x′, y′) to (x, y) by scaling up (denormalize) with factor 1 / a . Note that 1 / a ...
When the equations are independent, each equation contains new information about the variables, and removing any of the equations increases the size of the solution set. For linear equations, logical independence is the same as linear independence. The equations x − 2y = −1, 3x + 5y = 8, and 4x + 3y = 7 are linearly dependent. For example ...
The slope a measures the rate of change of the output y per unit change in the input x. In the graph, moving one unit to the right (increasing x by 1) moves the y-value up by a: that is, (+) = +. Negative slope a indicates a decrease in y for each increase in x.
Hence the constant "k" is the product of x and y. The graph of two variables varying inversely on the Cartesian coordinate plane is a rectangular hyperbola. The product of the x and y values of each point on the curve equals the constant of proportionality (k). Since neither x nor y can equal zero (because k is non-zero), the graph never ...
An example of a linear function is the function defined by () = (,) that maps the real line to a line in the Euclidean plane R 2 that passes through the origin. An example of a linear polynomial in the variables X , {\displaystyle X,} Y {\displaystyle Y} and Z {\displaystyle Z} is a X + b Y + c Z + d . {\displaystyle aX+bY+cZ+d.}
Its graph, when there is only one variable, is a horizontal line. In this context, a function that is also a linear map (the other meaning) may be referred to as a homogeneous linear function or a linear form. In the context of linear algebra, the polynomial functions of degree 0 or 1 are the scalar-valued affine maps.
The scaling is uniform if and only if the scaling factors are equal (v x = v y = v z). If all except one of the scale factors are equal to 1, we have directional scaling. In the case where v x = v y = v z = k, scaling increases the area of any surface by a factor of k 2 and the volume of any solid object by a factor of k 3.
Vertical line of equation x = a Horizontal line of equation y = b. Each solution (x, y) of a linear equation + + = may be viewed as the Cartesian coordinates of a point in the Euclidean plane. With this interpretation, all solutions of the equation form a line, provided that a and b are not both zero. Conversely, every line is the set of all ...