enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. C-element - Wikipedia

    en.wikipedia.org/wiki/C-element

    In digital computing, the Muller C-element (C-gate, hysteresis flip-flop, coincident flip-flop, or two-hand safety circuit) is a small binary logic circuit widely used in design of asynchronous circuits and systems. It outputs 0 when all inputs are 0, it outputs 1 when all inputs are 1, and it retains its output state otherwise.

  3. Perceptrons (book) - Wikipedia

    en.wikipedia.org/wiki/Perceptrons_(book)

    The perceptron is a neural net developed by psychologist Frank Rosenblatt in 1958 and is one of the most famous machines of its period. [11] [12] In 1960, Rosenblatt and colleagues were able to show that the perceptron could in finitely many training cycles learn any task that its parameters could embody.

  4. Perceptron - Wikipedia

    en.wikipedia.org/wiki/Perceptron

    In separable problems, perceptron training can also aim at finding the largest separating margin between the classes. The so-called perceptron of optimal stability can be determined by means of iterative training and optimization schemes, such as the Min-Over algorithm (Krauth and Mezard, 1987) [38] or the AdaTron (Anlauf and Biehl, 1989)). [44]

  5. Neural network - Wikipedia

    en.wikipedia.org/wiki/Neural_network

    However, starting with the invention of the perceptron, a simple artificial neural network, by Warren McCulloch and Walter Pitts in 1943, [9] followed by the implementation of one in hardware by Frank Rosenblatt in 1957, [3] artificial neural networks became increasingly used for machine learning applications and diverged significantly from ...

  6. Branch predictor - Wikipedia

    en.wikipedia.org/wiki/Branch_predictor

    In 2001, [26] the first perceptron predictor was presented that was feasible to implement in hardware. The first commercial implementation of a perceptron branch predictor was in AMD's Piledriver microarchitecture. [27] The main advantage of the neural predictor is its ability to exploit long histories while requiring only linear resource growth.

  7. Frank Rosenblatt - Wikipedia

    en.wikipedia.org/wiki/Frank_Rosenblatt

    The Mark I Perceptron, which is generally recognized as a forerunner to artificial intelligence, currently resides in the Smithsonian Institution in Washington D.C. [3] The Mark I was able to learn, recognize letters, and solve quite complex problems. Principles of Neurodynamics (1962)

  8. Highway network - Wikipedia

    en.wikipedia.org/wiki/Highway_network

    In machine learning, the Highway Network was the first working very deep feedforward neural network with hundreds of layers, much deeper than previous neural networks. [1] [2] [3] It uses skip connections modulated by learned gating mechanisms to regulate information flow, inspired by long short-term memory (LSTM) recurrent neural networks.

  9. Feedforward neural network - Wikipedia

    en.wikipedia.org/wiki/Feedforward_neural_network

    A multilayer perceptron (MLP) is a misnomer for a modern feedforward artificial neural network, consisting of fully connected neurons (hence the synonym sometimes used of fully connected network (FCN)), often with a nonlinear kind of activation function, organized in at least three layers, notable for being able to distinguish data that is not ...