Search results
Results from the WOW.Com Content Network
NC = P problem The P vs NP problem is a major unsolved question in computer science that asks whether every problem whose solution can be quickly verified by a computer (NP) can also be quickly solved by a computer (P). This question has profound implications for fields such as cryptography, algorithm design, and computational theory.
In theoretical computer science, a computational problem is one that asks for a solution in terms of an algorithm. For example, the problem of factoring "Given a positive integer n, find a nontrivial prime factor of n." is a computational problem that has a solution, as there are many known integer factorization algorithms.
The problem for graphs is NP-complete if the edge lengths are assumed integers. The problem for points on the plane is NP-complete with the discretized Euclidean metric and rectilinear metric. The problem is known to be NP-hard with the (non-discretized) Euclidean metric. [3]: ND22, ND23
Another naive solution is to greedily assign the pair with the smallest cost first, and remove the vertices; then, among the remaining vertices, assign the pair with the smallest cost; and so on. This algorithm may yield a non-optimal solution. For example, suppose there are two tasks and two agents with costs as follows:
In computational complexity theory, a problem refers to the abstract question to be solved. In contrast, an instance of this problem is a rather concrete utterance, which can serve as the input for a decision problem. For example, consider the problem of primality testing. The instance is a number (e.g., 15) and the solution is "yes" if the ...
In the field of computer science, the method is called generate and test (brute force). In elementary algebra, when solving equations, it is called guess and check. [citation needed] This approach can be seen as one of the two basic approaches to problem-solving, contrasted with an approach using insight and theory.
Most problems can be formulated in terms of a search space and target in several different ways. For example, for the traveling salesman problem a solution can be a route visiting all cities and the goal is to find the shortest route. But a solution can also be a path, and being a cycle is part of the target.
In computer science and formal methods, a SAT solver is a computer program which aims to solve the Boolean satisfiability problem (SAT). On input a formula over Boolean variables, such as "(x or y) and (x or not y)", a SAT solver outputs whether the formula is satisfiable, meaning that there are possible values of x and y which make the formula true, or unsatisfiable, meaning that there are no ...