enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Eberhard's theorem - Wikipedia

    en.wikipedia.org/wiki/Eberhard's_theorem

    A hexagon bisects the cube into two copies of a simple polyhedron with one hexagonal face, three isosceles right triangle faces, and three irregular pentagonal faces. It is not possible to form a simple polyhedron using only three triangles and three pentagons, without the added hexagon.

  3. Hexagonal number - Wikipedia

    en.wikipedia.org/wiki/Hexagonal_number

    Every hexagonal number is a triangular number, but only every other triangular number (the 1st, 3rd, 5th, 7th, etc.) is a hexagonal number. Like a triangular number, the digital root in base 10 of a hexagonal number can only be 1, 3, 6, or 9. The digital root pattern, repeating every nine terms, is "1 6 6 1 9 3 1 3 9". Every even perfect number ...

  4. Rhombicosidodecahedron - Wikipedia

    en.wikipedia.org/wiki/Rhombicosidodecahedron

    In geometry, the Rhombicosidodecahedron is an Archimedean solid, one of thirteen convex isogonal nonprismatic solids constructed of two or more types of regular polygon faces. It has a total of 62 faces: 20 regular triangular faces, 30 square faces, 12 regular pentagonal faces, with 60 vertices, and 120 edges.

  5. Goldberg polyhedron - Wikipedia

    en.wikipedia.org/wiki/Goldberg_polyhedron

    They are defined by three properties: each face is either a pentagon or hexagon, exactly three faces meet at each vertex, and they have rotational icosahedral symmetry. They are not necessarily mirror-symmetric; e.g. GP(5,3) and GP(3,5) are enantiomorphs of each other. A Goldberg polyhedron is a dual polyhedron of a geodesic polyhedron.

  6. Hexadecagon - Wikipedia

    en.wikipedia.org/wiki/Hexadecagon

    This decomposition is based on a Petrie polygon projection of an 8-cube, with 28 of 1792 faces. The list OEIS : A006245 enumerates the number of solutions as 1232944, including up to 16-fold rotations and chiral forms in reflection.

  7. Hexahedron - Wikipedia

    en.wikipedia.org/wiki/Hexahedron

    A cube, for example, is a regular hexahedron with all its faces square, and three squares around each vertex. There are seven topologically distinct convex hexahedra, [1] one of which exists in two mirror image forms. Additional non-convex hexahedra exist, with their number depending on how polyhedra are defined.

  8. Figurate number - Wikipedia

    en.wikipedia.org/wiki/Figurate_number

    To transform from the n-square (the square of size n) to the (n + 1)-square, one adjoins 2n + 1 elements: one to the end of each row (n elements), one to the end of each column (n elements), and a single one to the corner. For example, when transforming the 7-square to the 8-square, we add 15 elements; these adjunctions are the 8s in the above ...

  9. Chamfer (geometry) - Wikipedia

    en.wikipedia.org/wiki/Chamfer_(geometry)

    Because all the faces of the cC have an even number of sides and are centrally symmetric, it is a zonohedron: Chamfered cube (3 zones are shown by 3 colors for their hexagons — each square is in 2 zones —.) The chamfered cube is also the Goldberg polyhedron GP IV (2,0) or {4+,3} 2,0, containing square and hexagonal faces.