Search results
Results from the WOW.Com Content Network
The successor function is part of the formal language used to state the Peano axioms, which formalise the structure of the natural numbers.In this formalisation, the successor function is a primitive operation on the natural numbers, in terms of which the standard natural numbers and addition are defined. [1]
In mathematical logic, Gödel's β function is a function used to permit quantification over finite sequences of natural numbers in formal theories of arithmetic. The β function is used, in particular, in showing that the class of arithmetically definable functions is closed under primitive recursion, and therefore includes all primitive recursive functions.
The primitive recursive functions are closely related to mathematical finitism, and are used in several contexts in mathematical logic where a particularly constructive system is desired. Primitive recursive arithmetic (PRA), a formal axiom system for the natural numbers and the primitive recursive functions on them, is often used for this purpose.
Recursive drawing of a SierpiĆski Triangle through turtle graphics. In computer science, recursion is a method of solving a computational problem where the solution depends on solutions to smaller instances of the same problem. [1] [2] Recursion solves such recursive problems by using functions that call themselves from within their own code ...
In Zermelo–Fraenkel (ZF) set theory, the natural numbers are defined recursively by letting 0 = {} be the empty set and n + 1 (the successor function) = n ∪ {n} for each n. In this way n = {0, 1, …, n − 1} for each natural number n. This definition has the property that n is a set with n elements.
The entire set of natural numbers is computable. Each natural number (as defined in standard set theory) is computable; that is, the set of natural numbers less than a given natural number is computable. The subset of prime numbers is computable. A recursive language is a computable subset of a formal language.
The Cantor pairing function assigns one natural number to each pair of natural numbers Graph of the Cantor pairing function The Cantor pairing function is a primitive recursive pairing function π : N × N → N {\displaystyle \pi :\mathbb {N} \times \mathbb {N} \to \mathbb {N} }
Primitive recursive arithmetic (PRA) is a quantifier-free formalization of the natural numbers. It was first proposed by Norwegian mathematician Skolem (1923) , [ 1 ] as a formalization of his finitistic conception of the foundations of arithmetic , and it is widely agreed that all reasoning of PRA is finitistic.