enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Successor function - Wikipedia

    en.wikipedia.org/wiki/Successor_function

    The successor function is part of the formal language used to state the Peano axioms, which formalise the structure of the natural numbers.In this formalisation, the successor function is a primitive operation on the natural numbers, in terms of which the standard natural numbers and addition are defined. [1]

  3. Gödel's β function - Wikipedia

    en.wikipedia.org/wiki/Gödel's_β_function

    In mathematical logic, Gödel's β function is a function used to permit quantification over finite sequences of natural numbers in formal theories of arithmetic. The β function is used, in particular, in showing that the class of arithmetically definable functions is closed under primitive recursion, and therefore includes all primitive recursive functions.

  4. Recamán's sequence - Wikipedia

    en.wikipedia.org/wiki/Recamán's_sequence

    Because its elements are related to the previous elements in a straightforward way, they are often defined using recursion. A drawing of the first 75 terms of Recamán's sequence, according with the method of visualization shown in the Numberphile video The Slightly Spooky Recamán Sequence [3]

  5. Recursion (computer science) - Wikipedia

    en.wikipedia.org/wiki/Recursion_(computer_science)

    Recursive drawing of a Sierpiński Triangle through turtle graphics. In computer science, recursion is a method of solving a computational problem where the solution depends on solutions to smaller instances of the same problem. [1] [2] Recursion solves such recursive problems by using functions that call themselves from within their own code ...

  6. Set-theoretic definition of natural numbers - Wikipedia

    en.wikipedia.org/wiki/Set-theoretic_definition...

    In Zermelo–Fraenkel (ZF) set theory, the natural numbers are defined recursively by letting 0 = {} be the empty set and n + 1 (the successor function) = n ∪ {n} for each n. In this way n = {0, 1, …, n − 1} for each natural number n. This definition has the property that n is a set with n elements.

  7. Primitive recursive function - Wikipedia

    en.wikipedia.org/wiki/Primitive_recursive_function

    The primitive recursive functions are closely related to mathematical finitism, and are used in several contexts in mathematical logic where a particularly constructive system is desired. Primitive recursive arithmetic (PRA), a formal axiom system for the natural numbers and the primitive recursive functions on them, is often used for this purpose.

  8. Natural numbers object - Wikipedia

    en.wikipedia.org/wiki/Natural_numbers_object

    The natural numbers 𝐍 are an NNO where z is a function from a singleton to 𝐍 whose image is zero, and s is the successor function. (We could actually allow z to pick out any element of 𝐍, and the resulting NNO would be isomorphic to this one.) One can prove that the diagram in the definition commutes using mathematical induction.

  9. Pairing function - Wikipedia

    en.wikipedia.org/wiki/Pairing_function

    The Cantor pairing function assigns one natural number to each pair of natural numbers Graph of the Cantor pairing function The Cantor pairing function is a primitive recursive pairing function π : N × N → N {\displaystyle \pi :\mathbb {N} \times \mathbb {N} \to \mathbb {N} }