enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Random forest - Wikipedia

    en.wikipedia.org/wiki/Random_forest

    The training algorithm for random forests applies the general technique of bootstrap aggregating, or bagging, to tree learners. Given a training set X = x 1, ..., x n with responses Y = y 1, ..., y n, bagging repeatedly (B times) selects a random sample with replacement of the training set and fits trees to these samples:

  3. Monte Carlo tree search - Wikipedia

    en.wikipedia.org/wiki/Monte_Carlo_tree_search

    The rating of best Go-playing programs on the KGS server since 2007. Since 2006, all the best programs use Monte Carlo tree search. [14]In 2006, inspired by its predecessors, [15] Rémi Coulom described the application of the Monte Carlo method to game-tree search and coined the name Monte Carlo tree search, [16] L. Kocsis and Cs.

  4. Monte Carlo method - Wikipedia

    en.wikipedia.org/wiki/Monte_Carlo_method

    Possible moves are organized in a search tree and many random simulations are used to estimate the long-term potential of each move. A black box simulator represents the opponent's moves. [80] The Monte Carlo tree search (MCTS) method has four steps: [81] Starting at root node of the tree, select optimal child nodes until a leaf node is reached.

  5. Greedy algorithm - Wikipedia

    en.wikipedia.org/wiki/Greedy_algorithm

    Greedy algorithms determine the minimum number of coins to give while making change. These are the steps most people would take to emulate a greedy algorithm to represent 36 cents using only coins with values {1, 5, 10, 20}. The coin of the highest value, less than the remaining change owed, is the local optimum.

  6. Decision tree learning - Wikipedia

    en.wikipedia.org/wiki/Decision_tree_learning

    Such algorithms cannot guarantee to return the globally optimal decision tree. To reduce the greedy effect of local optimality, some methods such as the dual information distance (DID) tree were proposed. [36] Decision-tree learners can create over-complex trees that do not generalize well from the training data. (This is known as overfitting ...

  7. Search algorithm - Wikipedia

    en.wikipedia.org/wiki/Search_algorithm

    Specific applications of search algorithms include: Problems in combinatorial optimization, such as: . The vehicle routing problem, a form of shortest path problem; The knapsack problem: Given a set of items, each with a weight and a value, determine the number of each item to include in a collection so that the total weight is less than or equal to a given limit and the total value is as ...

  8. Learning to rank - Wikipedia

    en.wikipedia.org/wiki/Learning_to_rank

    Training data is used by a learning algorithm to produce a ranking model which computes the relevance of documents for actual queries. Typically, users expect a search query to complete in a short time (such as a few hundred milliseconds for web search), which makes it impossible to evaluate a complex ranking model on each document in the ...

  9. Dichotomic search - Wikipedia

    en.wikipedia.org/wiki/Dichotomic_search

    Abstractly, a dichotomic search can be viewed as following edges of an implicit binary tree structure until it reaches a leaf (a goal or final state). This creates a theoretical tradeoff between the number of possible states and the running time: given k comparisons, the algorithm can only reach O(2 k ) possible states and/or possible goals.