Search results
Results from the WOW.Com Content Network
The distinction is made between the dynamic and the static analysis on the basis of whether the applied action has enough acceleration in comparison to the structure's natural frequency. If a load is applied sufficiently slowly, the inertia forces ( Newton's first law of motion ) can be ignored and the analysis can be simplified as static analysis.
Stiffness is the extent to which an object resists deformation in response to an applied force. [ 1 ] The complementary concept is flexibility or pliability: the more flexible an object is, the less stiff it is.
Stiffness depends upon material properties and geometry. The stiffness of a structural element of a given material is the product of the material's Young's modulus and the element's second moment of area. Stiffness is measured in force per unit length (newtons per millimetre or N/mm), and is equivalent to the 'force constant' in Hooke's Law.
The structure’s unknown displacements and forces can then be determined by solving this equation. The direct stiffness method forms the basis for most commercial and free source finite element software. The direct stiffness method originated in the field of aerospace. Researchers looked at various approaches for analysis of complex airplane ...
The quantity is the extensional stiffness, is the coupled extensional-bending stiffness, and is the bending stiffness. For the situation where the beam has a uniform cross-section and no axial load, the governing equation for a large-rotation Euler–Bernoulli beam is
The assemblage of the various stiffness's into a master stiffness matrix that represents the entire structure leads to the system's stiffness or flexibility relation. To establish the stiffness (or flexibility) of a particular element, we can use the mechanics of materials approach for simple one-dimensional bar elements, and the elasticity ...
Dynamic stretches are done to warm up before a workout and static stretches are done to cool down. Stretching reduces injury risk, relieves sore muscles and increases flexibility. ...
Elastic constants are specific parameters that quantify the stiffness of a material in response to applied stresses and are fundamental in defining the elastic properties of materials. These constants form the elements of the stiffness matrix in tensor notation, which relates stress to strain through linear equations in anisotropic materials.