Search results
Results from the WOW.Com Content Network
Chromatin is a complex of DNA and protein found in eukaryotic cells. [1] The primary function is to package long DNA molecules into more compact, denser structures. This prevents the strands from becoming tangled and also plays important roles in reinforcing the DNA during cell division , preventing DNA damage , and regulating gene expression ...
Basic units of chromatin structure. Histone H3 is one of the five main histones involved in the structure of chromatin in eukaryotic cells. [1] [2] Featuring a main globular domain and a long N-terminal tail, H3 is involved with the structure of the nucleosomes of the 'beads on a string' structure.
In eukaryotes, there are two distinct types of cell division: a vegetative division , producing daughter cells genetically identical to the parent cell, and a cell division that produces haploid gametes for sexual reproduction , reducing the number of chromosomes from two of each type in the diploid parent cell to one of each type in the ...
During the cell division, chromatin compaction increases even more to form chromosomes, which can cope with large mechanical forces dragging them into each of the two daughter cells. [1] Many aspects of transcription are controlled by chemical modification on the histone proteins, known as the histone code .
Eukaryotic chromosomes are also stored in the cell nucleus, while chromosomes of prokaryotic cells are not stored in a nucleus. Eukaryotic chromosomes require a higher level of packaging to condense the DNA molecules into the cell nucleus because of the larger amount of DNA. This level of packaging includes the wrapping of DNA around proteins ...
Organization of DNA in a eukaryotic cell. Each eukaryotic chromosome consists of a long linear DNA molecule associated with proteins, forming a compact complex of proteins and DNA called chromatin. Chromatin contains the vast majority of the DNA in an organism, but a small amount inherited maternally can be found in the mitochondria.
Chromatin can form a tertiary chromatin structure and be compacted even further than the solenoid structure by forming supercoils which have a diameter of around 700 nm. [12] This supercoil is formed by regions of DNA called scaffold/matrix attachment regions (SMARs) attaching to a central scaffolding matrix in the nucleus creating loops of ...
Mitosis in eukaryotes: In mitosis, loop extrusion by condensin is critical for the segregation of sister chromatids and for providing structural rigidity after separation. Condensin I has been found to modulate the size and arrangement of nested inner loops and condensin II organizing the backbone from which loops emanate.