Search results
Results from the WOW.Com Content Network
The proposed system involves converting the input image into a format such that the number of objects can be calculated based on the connected components present in the enhanced image. This project work also aims at determining the correct value of density by clearing the objects touching the borders of the image.
In machine learning, Platt scaling or Platt calibration is a way of transforming the outputs of a classification model into a probability distribution over classes.The method was invented by John Platt in the context of support vector machines, [1] replacing an earlier method by Vapnik, but can be applied to other classification models. [2]
An implementation that computes the probability density function of the Wakeby distribution is included in the Dataplot scientific computation library, as routine WAKPDF. [ 1 ] An alternative to the above method is to define the PDF parametrically as ( W ( p ) , 1 / w ( p ) ) , 0 ≤ p ≤ 1 {\displaystyle (W(p),1/w(p)),\ 0\leq p\leq 1} .
Animation showing the effects of a scale parameter on a probability distribution supported on the positive real line. Effect of a scale parameter over a mixture of two normal probability distributions. If the probability density exists for all values of the complete parameter set, then the density (as a function of the scale parameter only ...
We employ the Matlab routine for 2-dimensional data. The routine is an automatic bandwidth selection method specifically designed for a second order Gaussian kernel. [14] The figure shows the joint density estimate that results from using the automatically selected bandwidth. Matlab script for the example
It is a generalization of the gamma distribution which has one shape parameter (and a scale parameter). Since many distributions commonly used for parametric models in survival analysis (such as the exponential distribution , the Weibull distribution and the gamma distribution ) are special cases of the generalized gamma, it is sometimes used ...
The probability density function is (,) = ((+)) (),where I 0 (z) is the modified Bessel function of the first kind with order zero.. In the context of Rician fading, the distribution is often also rewritten using the Shape Parameter =, defined as the ratio of the power contributions by line-of-sight path to the remaining multipaths, and the Scale parameter = +, defined as the total power ...
Variance-based sensitivity analysis (often referred to as the Sobol’ method or Sobol’ indices, after Ilya M. Sobol’) is a form of global sensitivity analysis. [1] [2] Working within a probabilistic framework, it decomposes the variance of the output of the model or system into fractions which can be attributed to inputs or sets of inputs.