Ad
related to: golden triangle calculator calculus 3
Search results
Results from the WOW.Com Content Network
A golden triangle. The ratio a/b is the golden ratio φ. The vertex angle is =.Base angles are 72° each. Golden gnomon, having side lengths 1, 1, and .. A golden triangle, also called a sublime triangle, [1] is an isosceles triangle in which the duplicated side is in the golden ratio to the base side:
Its true value is the real solution of the equation x 3 = x 2 + 1. The name supergolden ratio results from analogy with the golden ratio, the positive solution of the equation x 2 = x + 1. A triangle with side lengths ψ, 1, and 1 ∕ ψ has an angle of exactly 120 degrees. [1]
The angle bisector of the golden triangle subdivides the side that it meets in the golden ratio, and the areas of the two subdivided pieces are also in the golden ratio. [47] If the apex angle of the golden gnomon is trisected, the trisector again subdivides it into a smaller golden gnomon and a golden triangle. The trisector subdivides the ...
The golden angle is the angle subtended by the smaller (red) arc when two arcs that make up a circle are in the golden ratio. In geometry, the golden angle is the smaller of the two angles created by sectioning the circumference of a circle according to the golden ratio; that is, into two arcs such that the ratio of the length of the smaller arc to the length of the larger arc is the same as ...
The golden spiral is a logarithmic spiral that grows outward by a factor of the golden ratio for every 90 degrees of rotation (pitch angle about 17.03239 degrees). It can be approximated by a "Fibonacci spiral", made of a sequence of quarter circles with radii proportional to Fibonacci numbers .
The name "Kepler triangle" for this shape was used by Roger Herz-Fischler, based on Kepler's 1597 letter, as early as 1979. [7] Another name for the same triangle, used by Matila Ghyka in his 1946 book on the golden ratio, The Geometry of Art and Life, is the "triangle of Price", after pyramidologist W. A. Price. [12]
In geometry, a golden rectangle is a rectangle with side lengths in golden ratio +:, or :, with approximately equal to 1.618 or 89/55. Golden rectangles exhibit a special form of self-similarity : if a square is added to the long side, or removed from the short side, the result is a golden rectangle as well.
For example, a right triangle may have angles that form simple relationships, such as 45°–45°–90°. This is called an "angle-based" right triangle. A "side-based" right triangle is one in which the lengths of the sides form ratios of whole numbers, such as 3 : 4 : 5, or of other special numbers such as the golden ratio.
Ad
related to: golden triangle calculator calculus 3