Search results
Results from the WOW.Com Content Network
Euler's identity is also a special case of the more general identity that the n th roots of unity, for n > 1, add up to 0: = = Euler's identity is the case where n = 2. A similar identity also applies to quaternion exponential: let {i, j, k} be the basis quaternions; then,
Let =,; then (/) is the direct product of a cyclic group of order 2 (generated by −1) and a cyclic group of order () (generated by 5). For odd numbers a {\displaystyle a} define the functions ν 0 {\displaystyle \nu _{0}} and ν q {\displaystyle \nu _{q}} by
For any element x in a ring R, one has x0 = 0 = 0x (zero is an absorbing element with respect to multiplication) and (–1)x = –x. If 0 = 1 in a ring R (or more generally, 0 is a unit element), then R has only one element, and is called the zero ring. If a ring R contains the zero ring as a subring, then R itself is the zero ring. [6]
A real number a can be regarded as a complex number a + 0i, whose imaginary part is 0. A purely imaginary number bi is a complex number 0 + bi, whose real part is zero. It is common to write a + 0i = a, 0 + bi = bi, and a + (−b)i = a − bi; for example, 3 + (−4)i = 3 − 4i.
The Dirichlet L-function L(s, χ) = 1 − 3 −s + 5 −s − 7 −s + ⋅⋅⋅ (sometimes given the special name Dirichlet beta function), with trivial zeros at the negative odd integers. Let χ be a primitive character modulo q, with q > 1. There are no zeros of L(s, χ) with Re(s) > 1. For Re(s) < 0, there are zeros at certain negative ...
The zeta function values listed below include function values at the negative even numbers (s = −2, −4, etc.), for which ζ(s) = 0 and which make up the so-called trivial zeros. The Riemann zeta function article includes a colour plot illustrating how the function varies over a continuous rectangular region of the complex plane.
The above theorem generalizes in the obvious way to holomorphic functions: Let and be two open and simply connected sets of , and assume that : is a biholomorphism. Then f {\displaystyle f} and f − 1 {\displaystyle f^{-1}} have antiderivatives, and if F {\displaystyle F} is an antiderivative of f {\displaystyle f} , the general antiderivative ...
Remark: Let K be a field extension of L, and let B and A be the rings of integers of K and L, respectively. Then B is an integral extension of A, and we let f be the inclusion map from A to B. The behaviour of a prime ideal = of A under extension is one of the central problems of algebraic number theory.