Search results
Results from the WOW.Com Content Network
Infrared spectroscopy (IR spectroscopy or vibrational spectroscopy) is the measurement of the interaction of infrared radiation with matter by absorption, emission, or reflection. It is used to study and identify chemical substances or functional groups in solid, liquid, or gaseous forms.
An infrared laser is directed through a window into the vacuum of the mass spectrometer where the ions are. The mechanism of fragmentation involves the absorption by a given ion of multiple infrared photons. The parent ion becomes excited into more energetic vibrational states until a bond(s) is broken resulting in gas phase fragments of the ...
Fourier transform infrared spectroscopy (FTIR) [1] is a technique used to obtain an infrared spectrum of absorption or emission of a solid, liquid, or gas. An FTIR spectrometer simultaneously collects high-resolution spectral data over a wide spectral range.
Two-dimensional infrared spectroscopy (2D IR) is a nonlinear infrared spectroscopy technique that has the ability to correlate vibrational modes in condensed-phase systems. This technique provides information beyond linear infrared spectra, by spreading the vibrational information along multiple axes, yielding a frequency correlation spectrum.
The particle size should be smaller than the wavelength of the incident light in order to minimize Mie scattering, so this would infer that it should be less than 5 μm for mid-infrared spectroscopy. The spectra are plotted in units of log inverse reflectance (log 1/R) versus wavenumber.
Infrared spectroscopy is based on the fact that molecules absorb electromagnetic radiation at characteristic frequencies related to their vibrational structure. Infrared (IR) spectroelectrochemistry is a technique that allows the characterization of molecules based on the resistance, stiffness and number of bonds present.
IRPD spectroscopy has been shown to use electron ionization, corona discharge, and electrospray ionization to obtain spectra of volatile and nonvolatile compounds. [2] [3] Ionized gases trapped in a mass spectrometer can be studied without the need of a solvent as in infrared spectroscopy. [4] Schematic diagram of infrared photodissociation ...
Infrared spectroscopy examines absorption and transmission of photons in the infrared range. [9] Infrared radiation is used in industrial, scientific, military, commercial, and medical applications. Night-vision devices using active near-infrared illumination allow people or animals to be observed without the observer being detected.