Search results
Results from the WOW.Com Content Network
Algebraic topology is a branch of mathematics that uses tools from abstract algebra to study topological spaces. The basic goal is to find algebraic invariants that classify topological spaces up to homeomorphism , though usually most classify up to homotopy equivalence .
In the mathematical field of algebraic topology, the fundamental group of a topological space is the group of the equivalence classes under homotopy of the loops contained in the space.
A three-dimensional model of a figure-eight knot.The figure-eight knot is a prime knot and has an Alexander–Briggs notation of 4 1.. Topology (from the Greek words τόπος, 'place, location', and λόγος, 'study') is the branch of mathematics concerned with the properties of a geometric object that are preserved under continuous deformations, such as stretching, twisting, crumpling ...
Algebraic topology is a branch of mathematics in which tools from abstract algebra are used to study topological spaces Subcategories. This category has the following ...
Chain (algebraic topology) Betti number; Euler characteristic. Genus; Riemann–Hurwitz formula; Singular homology; Cellular homology; Relative homology; Mayer–Vietoris sequence; Excision theorem; Universal coefficient theorem; Cohomology. List of cohomology theories; Cocycle class; Cup product; Cohomology ring; De Rham cohomology; Čech ...
In mathematics, and more specifically in algebraic topology and polyhedral combinatorics, the Euler characteristic (or Euler number, or Euler–Poincaré characteristic) is a topological invariant, a number that describes a topological space's shape or structure regardless of the way it is bent.
This is a glossary of properties and concepts in algebraic topology in mathematics. See also: glossary of topology, list of algebraic topology topics, glossary of category theory, glossary of differential geometry and topology, Timeline of manifolds. Convention: Throughout the article, I denotes the unit interval, S n the n-sphere and D n the n ...
In mathematics, specifically algebraic topology, an Eilenberg–MacLane space [note 1] is a topological space with a single nontrivial homotopy group. Let G be a group and n a positive integer . A connected topological space X is called an Eilenberg–MacLane space of type K ( G , n ) {\displaystyle K(G,n)} , if it has n -th homotopy group π n ...