Search results
Results from the WOW.Com Content Network
Nutrient pollution, a form of water pollution, refers to contamination by excessive inputs of nutrients.It is a primary cause of eutrophication of surface waters (lakes, rivers and coastal waters), in which excess nutrients, usually nitrogen or phosphorus, stimulate algal growth. [1]
Freshwater acidification can cause aluminium toxicity and mortality of pH-sensitive fish species. Because marine systems are generally nitrogen-limited, excessive N inputs can result in water quality degradation due to toxic algal blooms, oxygen deficiency, habitat loss, decreases in biodiversity, and fishery losses. [8]
Even though nitrogen is a necessary element for life, too much of it in water can have negative effects on aquatic ecosystems and endanger human health. Agricultural runoff, where fertilizers containing nitrogen compounds can seep into rivers, lakes, and groundwater, is one of the main sources of nitrogen in water.
soil type and structure. For example, sandy soil holds little water while clay soils have high water-retention rates; the amount of water used by the plants/crops; how much nitrate is already present in the soil. [3] The level of nitrous oxide (N 2 O) in the Earth's atmosphere is increasing at a rate of 0.2 to 0.3% annually.
As it has low water solubility, it tends to stay at the water surface, so organisms that live there are most affected. DDT found in fish that formed part of the human food chain caused concern, but the levels found in the liver, kidney and brain tissues was less than 1 ppm and in fat was 10 ppm, which was below the level likely to cause harm.
Water moves in soil under the influence of gravity, osmosis and capillarity. [7] When water enters the soil, it displaces air from interconnected macropores by buoyancy, and breaks aggregates into which air is entrapped, a process called slaking. [8] The rate at which a soil can absorb water depends on the soil and its other conditions.
Water stagnation for as little as six days can completely change bacterial community composition and increase cell count. [3] Stagnant water may be classified into the following basic, although overlapping, types: Water body stagnation (stagnation in swamp, lake, lagoon, river, etc.) Surface and ground water stagnation; Trapped water stagnation.
In general, organic matter contacting soil has too little nitrogen to support the biosynthetic needs of the decomposing soil microbial population. If the C:N ratio of the decomposing organic matter is above circa 30:1 then the decomposing microbes may absorb nitrogen in mineral form as, e. g., ammonium or nitrates. This mineral nitrogen is said ...